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ABSTRACT
How can Programmable Logic Arrays (PLAs) be built with-
out relying on lithography to pattern their smallest fea-
tures? In this paper, we detail designs which exploit emerg-
ing, bottom-up material synthesis techniques to build PLAs
using molecular-scale nanowires. Our new designs accom-
modate technologies where the only post-fabrication pro-
grammable element is a non-restoring diode. We introduce
stochastic techniques which allow us to restore the diode
logic at the nanoscale so that it can be cascaded and in-
terconnected for general logic evaluation. Under conserva-
tive assumptions using 10nm nanowires and 90nm litho-
graphic support, we project yielded logic density around
500,000nm2/or term for a 60 or-term array; a complete
60-term, two-level PLA is roughly the same size as a sin-
gle 4-LUT logic block in 22nm lithography. Each or term is
comparable in area to a 4-transistor hardwired gate at 22nm.
Mapping sample datapaths and conventional programmable
logic benchmarks, we estimate that each 60-or-term PLA
plane will provide equivalent logic to 5–10 4-input LUTs.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles—logic arrays; B.7.1
[Integrated Circuits]: Types and Design Styles—advanced
technologies

General Terms
Design

Keywords
Sublithographic architecture, nanowires, programmable logic
arrays

1. INTRODUCTION
Programmable logic arrays (PLAs) have been a child of

lithography. Before lithographic integrated circuits, it did
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not make sense to build PLAs; logic was “customized” by
discrete wiring (e.g. patch cables). Once lithography could
support enough logic on a single chip to accommodate pro-
grammable configuration elements, it became interesting and
useful to include memory elements which could configure the
state of the device. As a result we developed PALs, PLDs,
and ultimately FPGAs.

Now it is becoming possible to look beyond lithography
and explore how we can build devices without relying on
lithography to pattern our smallest feature sizes. Scientists
are demonstrating bottom up techniques for defining key
feature sizes. These techniques suggest a path to molecular-
scale dimensions—they show us how to build features which
are just a few atoms across. At this scale, programmable
elements may be necessary in order to build any logic.

In this paper, we explore how to use nanowires (NWs)
to build sublithographic PLAs and interconnected PLAs.
These PLA blocks are likely to form leaf clusters in large-
scale, sublithographic programmable logic devices just as
small PLAs form leaf clusters in conventional, “complex”
PLDs. Owing to the fabrication regularity demanded when
using bottom-up techniques, the leaf clusters, and even the
programmable interconnect, are likely to be engineered and
parameterized quite differently from today’s, lithographic-
scale CPLDs. We identify those issues and explore where
the technology limitations and costs drive our designs.

We build a two-plane PLA with decorated silicon NWs
(See Figure 1). The NWs serve as our primary interconnect
and device building block (Section 2.1). We build upon pro-
grammable crosspoint diodes (Section 2.2). We show that
we can address individual NWs from the lithographic scale
which is necessary for bootstrap programming (Section 2.3).
We show how we achieve restoring logic and connect that to
the programmable diode logic (Section 3), and we detail a
precharge clocking scheme for logic evaluation (Section 4).
We show how the basic PLA cycle can be embellished to al-
low PLA evaluation through a configurable number of logic
planes (Section 5). We calculate the area, timing, and yield
of these devices (Section 6) and sketch the discovery of the
basic state of the devices to enable configuration and defect
avoidance (Section 7). Finally, we map small, conventional
programmable logic benchmarks and a select set of datap-
aths onto these devices to estimate their effective density
compared to conventional alternatives (Section 8).

New contributions of this work include:
• explicit formulation of NW-based PLAs with separate pro-

grammable and restoring devices
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Figure 1: Simple Nanowire PLA Composition

• introduction of stochastic techniques for building fixed,
restoring logic

• introduction of a PLA topology which requires lithographic
programming lines in only one dimension and allows pro-
gramming to be shared across multiple arrays

• introduction of a clocked, precharge scheme for sublitho-
graphic PLA logic

• introduction of simple topologies for physically config-
urable PLA cycles

• estimation of net logic density using mapped logic in-
stances from both standard programmable logic bench-
marks and focused datapath elements

2. BACKGROUND

2.1 Nanowires
Semiconducting nanowires (NWs) can be grown to con-

trolled dimensions on the nanometer scale using seed cata-
lysts (e.g. gold balls) to define their diameter. NWs with
diameters down to 3nm have been demonstrated [9] [31].
By controlling the mix of elements in the environment dur-
ing growth, semiconducting NWs can be doped to control
their electrical properties [8]. Conduction through doped
NWs can be controlled via an electrical field like Field-Effect
Transistors (FETs) [21]. The doping profile along the length
of a NW can be controlled by varying the dopant level in the
growth environment over time [18]; as a result, our control
over growth rate allows us to control the physical dimensions
of these features down to almost atomic precision. The dop-
ing profile can also be controlled along the radius of these
NWs, allowing us to sheath NWs in insulators (e.g. silicon-
dioxide) [26] to control spacing between conductors [38] and
between gated wires and control wires.

Flow techniques can be used to align a set of NWs into a
single orientation, close pack them, and transfer them onto
a surface [22] [38]. This step can be rotated and repeated so
that we get multiple layers of NWs [22] [39] such as crossed
NWs for building a crossbar array or memory core.

Each of the capabilities described above has been demon-
strated in a lab setting as detailed in the papers cited. We
assume it will be possible to combine these capabilities and
scale them into a repeatable manufacturing process.

2.2 Programmable Diode Crosspoints
Over the past few years, many technologies have been

demonstrated for molecular-scale memories. So far, they
all seem to have: (1) resistance which changes significantly
between “on” and “off” states, (2) the ability to be made
rectifying, and (3) the ability to turn the device “on” or
“off” by applying a voltage differential across the junction.
Rueckes et. al. demonstrate switched devices using sus-
pended nanotubes to realize a bistable junction with an en-
ergy barrier between the two states [34]. In the “off” state
the junction exhibits only small tunneling current (high re-
sistance ∼GΩs); when the devices are in contact in the “on”
state, there is little resistance (∼100KΩ) between the tubes.
UCLA and HP have demonstrated a number of molecules
which exhibits hysteresis [5] [6]. HP has demonstrated an
8×8 crossbar made from [2]rotaxane molecules and observed
that they could force an order of magnitude resistance dif-
ference between “on” and “off” state junctions [3].

2.3 Addressing Nanowires from Lithographic
Scale Wires

The preceding technologies allow us to pack NWs at a
tight pitch into crossbars with programmable crosspoints at
their junctions. The pitch of the NWs can be much smaller
than our lithographic patterning. We will be using the cross-
point programmability to configure logic functions into our
nanoscale devices. In order to do this, we need a way to se-
lectively place a defined voltage on a single row and column
wire in order to set the state of the crosspoint.

By constructing NWs with doping profiles on their ends,
we can give each NW an address (See left end of Figure 1).
The dimensions of the address bit control regions can be
set to the lithographic pitch so that a set of crossed, litho-
graphic wires can be used to address a single NW. If we
code up all the NWs along one dimension of an array with
suitably different codes, we can get unique NW address-
ability and effectively implement a demultiplexer between
a small number of lithographic wires and a large number
of NWs. We cannot control exactly which NW codes ap-
pear in a single array or how they are aligned, but if we
randomly select NWs from a sufficiently large code space,
we will achieve uniqueness with very high probability (over



99% easily achievable). The addresses do not have to be
entirely unique for this application; allowing a little redun-
dancy will allow us to use a tighter code space. The basic
stochastic addressing scheme is developed in detail in [14].
Calculations allowing redundancy are summarized in [15].

2.4 Technology Roundup
We can create wires which are nanometers in diameter

and can be arranged into crossbar arrays with nanometer
pitch. Crosspoints which both switch conduction between
the crossed wires and store their own state can be placed at
every wire crossing without increasing the pitch of the cross-
bar array. NWs can be controlled in FET-like manner and
can be designed with selectively gateable regions. The NWs
can be individually addressed from the lithographic scale.
No lithography is required to define the nanoscale features
in the crossbar; lithography is used to define the extents of
the crossbar, provide addressing for bootstrap programming,
and provide voltage supplies for the NW array.

2.5 Related Work
Several researchers have begun to explore programmable

logic structures at this scale. Heath [20] articulates a vision
for this kind of molecular-scale logic. Goldstein’s nanoFab-
rics [16] are a possible implementation of this vision using
only the two-terminal diode crosspoints introduced above.
Tour’s nanoCell [37] employs a random network of config-
urable Negative Differential Resistance (NDR), avoiding the
need for carefully ordered conductors on the nanoscale but
still requiring lithographic scale wires to interconnect and
restore nanoCells. Niemier [32] suggests an FPGA based
on Quantum Cellular Automata (QCA) which may require
lithographic-scale wires to control clock domains. NWs give
us unique capabilities currently not exploited in other ef-
forts. The techniques introduced here elaborate and com-
plement the parallel research efforts, demonstrating what we
can build with NWs, NW field-effect gating, doping profiles
on NWs, and stochastic population.

3. RESTORATION
Programmable diode crosspoints in a crossbar array give

us a programmable or plane (See marked regions in Fig-
ure 1). Each output NW in the plane can be programmed
to perform the or of its set of inputs. That is, there is a
low resistance path between the inputs and the output NW
only where the crosspoints are programmed into the “on”
position. If any of those inputs are high, they will be able
to deliver current through the “on” crosspoint and pull the
output line to a high value.

3.1 Limits of Diode Logic
Diodes alone do not give us arbitrary or cascadable logic.

We know that or gates are not universal logic building
blocks. With diodes alone we cannot invert signals which
will be necessary to realize arbitrary logic. Further, when-
ever an input is used by multiple outputs, we divide the
current among the outputs; this cannot continue through
arbitrary stages as it will eventually not be possible to dis-
tinguish the divided current from the leakage current of an
“off” crosspoint. The diode junction may further provide
a voltage drop at every crosspoint such that the maximum
output high voltage drops at every stage.
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Figure 2: Semi-Static Stages for Inversion or Buffer-
ing

3.2 Basic Programmable Logic Stages
We overcome the limitations of diode logic by inserting

rectifying field-effect stages between diode stages (Restora-
tion Columns in Figure 1) [13]. As noted above, a doped
NW can be gated like a FET. If the input field allows con-
duction, the NW will allow a source voltage to flow through
the gated junction; otherwise conduction is cut off and the
output is isolated, through a high impedance junction, from
the supply.

When we place a field-effect buffer or inverter on the out-
put of a diode or NW, the entire or stage is capacitively
loaded rather than resistively loaded. The or stage simply
needs to charge up its output which provides the field for the
field-effect based restoration stage. When the field is high
enough (low enough for p-type NWs) to enable conduction
in the field-effect stage, the NW will allow the source voltage
to drive its output. The field-effect stage provides isolation
as there is no current flow between the diode stage and the
field-effect stage output. We have previously shown that
NW field effects have good enough thresholds that we can
get gain and logic level restoration with these stages [13].

Figure 2 shows a restoring buffer and restoring inverter
logic stage built from NW field-effect gating and diode cross-
points. The restoring NWs are p-type and the receiving or
terms are n-type to define diode directionality for the cross-
points. We define the canonical stage to be a restoring gate
followed by a diode plane because that corresponds to the
total current path. The diode plane’s output only drives the
next such stage capacitively

The inverter case is simply a static load inverter followed
by the programmable diode. If the input to the inverter
is high, it depletes carriers in the depletion-mode p-type
NW and cuts off conduction. As a result, the output of
the inverter stage is connected only to the weak pulldown
resistance and the output is held low. As long as this output
remains low, the succeeding diode plane cannot be pulled
high by this line. When the input to the inverter is low,
there is current flow through the gate and the line is pulled
high; this couples through any “on” diode points and pulls
the associated diode output lines high. The strong pullup is
ratioed appropriately with the weak pulldown, both in the
inverter stage and in the diode stage, so that the pullup can
drive the outputs to suitably high output voltages.

The buffer case exhibits the same idea in reverse. By
taking the output from the high-voltage side of the input
gate, the buffer output is coupled to a high voltage when the
input is high and coupled to a low voltage when the input
is low. In this case, the high voltage needs a weak pullup
and the low voltage needs the strong drive for ratioed logic.
Since the weak pullup must drive through the diode and
pull up the diode outputs, it needs to be strong relative to
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the diode pull down resistor. Either we can make the diode
pull down resistance very weak so that the “weak” pullup is
still strong enough to overpower it, or we simply provide a
way to turn off the diode pulldown during logic evaluation
so that it does not need to form a ratioed voltage divider
with the weak pullup; the right side of Figure 2 shows this
control input as a precharge signal.

3.3 Stochastic Construction
An ideal restoration stage would be an array of NWs

where each NW restored a different one of the or terms
which crossed it (See Figure 3). To create the restoring
field-effect devices in Figure 2, we use our ability to define
the doping profile along the length of the NW to create a
NW that has only a single controllable region. This single
region is made wide enough for a single input, and only this
single region is doped lightly enough to be gateable by its
crossed input. The rest of the NW is heavily doped so that
it is oblivious to its input.

We cannot precisely select and place restoration wires into
a plane, but we can still define a useful restoration plane us-
ing our stochastic population technique. That is we code
up batches of NWs with control regions in the appropriate
places for each of the input locations. We mix these to-
gether and randomly select the NWs which go into each of
the restoration arrays. This gives us a random selection of
code wires. Given that we have a code space, Ninputs, (the
number of input positions for diode lines into this array) and
we populate our restoration array with Nrestore wires, how
many of the input lines will we restore? Table 1 summarizes
some Nrestore, Ninputs relations; see [15] for calculation de-
tails. For example, Table 1 says that if we have 100 input
lines and randomly select 100 restoring lines, we should ex-
pect to provide restoration for 56 different input lines.

3.4 Selective Inversion
In traditional PLA structures and PLA optimization, we

are accustomed to having both the true and complement
of a logic signal available. We can design this capability
into our sublithographic PLA by dividing the “restoration
plane” into two pieces and making half of the restoration
plane inverting and half non-inverting. As shown in Fig-
ures 2 and 4 this means we simply need to setup the supply
and control voltages on the restoring and non-inverting wires
appropriately. The programmable diode or stage which fol-
lows the restoration stage will take all the restored lines from
both the buffered and inverted lines as potential inputs. We
simply need to program this or plane to select its inputs
appropriately based on the needed polarity.

Ninputs Nrestore

20 30 40 50 60 70 80 90 100

20 10 12 14 16 17 17 18 18 19
40 12 17 21 24 27 29 30 32 33
60 14 19 24 29 33 36 39 41 43
80 15 21 27 32 36 41 44 48 51

100 15 22 28 34 39 44 48 52 56
120 16 23 29 36 41 47 52 56 60
140 16 23 30 37 43 49 54 59 64
160 16 24 31 38 44 50 56 62 67
180 16 24 32 39 45 52 58 64 69
200 17 25 32 39 46 53 59 65 71

Each table entry gives the number of different codes
(different inputs restored) we can expect with 99% cer-
tainty for the Ninputs, Nrestore pair.

Table 1: Wires Restored with 99% Probability
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Figure 4: Selective Inversion from a Pair of Stochas-
tic Restoring Stages

The population of both planes will be stochastic. This
means we will get a distribution of inverting and buffering
lines (See Figure 4). Some inputs from the previous stage
will be buffered only (e.g. 5 in Figure 4), some will be
inverted only (e.g. 2 in Figure 4), some will be both buffered
and inverted (e.g. 0, 1, and 3 in Figure 4), and some will be
neither buffered nor inverted (e.g. 4 in Figure 4). We must
assign logic which we want inverted/buffered or inverted and
buffered to the appropriate lines when selecting output lines
in the or array which precedes the restoration plane.

4. LOGIC DISCIPLINE AND CLOCKING
With slight modification in how we drive the control sig-

nals on the identified logic stages, we can turn this into a
clocked logic scheme. An immediate benefit is the ability
to create a finite-state machine out of a single pair of PLA
planes. A second benefit, which we can currently only real-
ize for inverting restoration stages, is the ability to replace
the ratioed logic with precharge logic evaluation.

4.1 Clocking
The basic PLA cycle shown in Figure 1 is simply two

restoring stages back-to-back (See Figure 5). For our clock-
ing scheme, we evaluate the two stages at altering times.

First, note that if we turn off all three of our control tran-
sistors in our restoring stages (restoring precharge and eval-
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uate and diode precharge), there is no current path from the
input to the diode output stage. We effectively isolate the
input from the output. Since the output stage is capacitively
loaded, the output will hold its value. As with any dynamic
scheme, eventually leakage on the output will be an issue,
which will set a lower bound on the clock frequency. Owing
to the small charges, this lower bound will be higher in NW
logic than in conventional lithographic logic.

With a stage isolated and holding its output, we can evalu-
ate the following stage. It computes its value from its input,
the output of the previous stage, and produces its result by
suitably charging its output line. Once this is done, we can
isolate this stage and evaluate its succeeding stage, which,
in this simple case, is also its predecessor.

In this manner, we never have an open current path all
the way around the PLA (See Figure 5 and 6). In the two
phases of operation, we effectively have a single register on
any PLA outputs which feed back to PLA inputs.

4.2 Precharge Evaluation
For the inverting stage, we can dispense entirely with the

weak pulldown transistor. Instead, we drive the pulldown
gate hard during precharge and turn it off during evaluation.
In this manner, we precharge the line low and pull it up
only if the input is low. This works conveniently in this case
because the output will also be precharged low. If the input
is high, then we do not want to pullup the output and simply
leave it low. If the input is low, we enable the current path to
pullup the output. The net benefit is that inverter pulldown
and pullup are both controlled by strongly driven gates and
can be fast, whereas in the static logic scheme, the pulldown

Isolation
DevicesPLA 1 PLA 2

Shared Address
       Decoder

Figure 7: Address Decoder Shared Across PLAs

transistor had to be weak, making pulldown slow compared
to pullup. Typically, the weak pulldown transistor would
be set to have an order of magnitude higher resistance than
the pullup transistor, so this can be a significant reduction
in worst-case gate evaluate latency (See Section 6.4).

Unfortunately, we can neither precharge to high nor turn
off the weak pullup resistor in the buffer case, so we do not
get comparable benefits there. Perhaps new devices or cir-
cuit organizations will eventually allow us to build precharge
buffer stages.

5. ORGANIZATION
The two-level PLA is adequate to implement logic in two-

level sum-of-products form. Nonetheless, it is well known
that many common functions require an exponential num-
ber of product terms when forced to two-level form, whereas
they can be implemented in a linear number of gates (e.g.
xor). Research on optimal PLA block size to include in con-
ventional, lithographic FPGAs suggests PLA blocks contain
modest (e.g. 10) product terms and programmable inter-
connect [23]. However, the fact that we wish to amortize
out the lithographic programming lines to get the benefits
of sublithographic PLAs will likely shift the beneficial PLA
size to larger numbers of product terms.

Here we explore how we can spread PLA evaluation over
multiple planes to avoid unreasonable growth in product
term requirements. We focus on two options for spreading
out PLA evaluation and their interaction:
1. physically creating PLA cycles with s stages
2. looping the evaluation of some function w times through

a set of s stages

5.1 Simple Cycle Organization
When we put together stochastic addressing, stochastic

inversion, programmable diode crosspoints, and precharge
clocking, we get a tight, two-plane array. This topology
requires addressing overhead for programming only in one
of the two dimensions (See left side of Figure 1).

A second feature of this array and clocking scheme is that
the row addresses can be shared among multiple such PLA
planes (See Figure 7). An isolation transistor serves to elec-
trically separate the row segments of the planes during op-
eration; during programming, the isolation transistor allows
the row decoder to address all of the PLAs. The key feature
which allows this sharing is that all rows on the same phase
can be pulled down simultaneously during their associated
precharge phase. We can use a single supply connection to
precharge all of the rows low simultaneously, then isolate
them for their evaluate and hold phases.

5.2 Physical Multistage Cycles
We can arrange the connection of NWs between arrays so

that we can build larger cycles (See Figure 8). This is how
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we physically vary s. Observing that there is no direction-
ality to the output of a diode NW plane, we can build a
large array of these plane slices (Figure 9) and configure the
isolation devices to logically arrange the large array into a
series of cycles.

5.3 Wrapped Logical Stage Cycles
Rather than using a separate physical plane for every log-

ical stage of evaluation in a spread PLA mapping, we can
wrap the logic around the PLA multiple times.

Consider a 4-input xor. xor is known to require expo-
nential product terms in two-level logic, while requiring only
linear products if mapped in log(inputs) levels. We can wrap
the xor twice through the PLA, computing the 4-input xor
as a cascade of two levels of 2-input xors (Figure 10). The
wrapped logic requires 6 active or terms for a total of 7 or
terms including inputs, outputs, and array feedbacks. The
flat logic requires 8 or terms. The difference grows as we
go to larger xors and deeper wrapping.

In a sense, the wrapped logic evaluation underutilizes the
PLA by a factor of w since the inputs and outputs from each
level of evaluation which are mapped to the same plane are
independent. This is shown in cartoon form in Figure 11.
The highlighted diagonal region is performing useful logic,
while the off-diagonal portions of the or planes are simply
not being used. Nonetheless, for functions which require ex-
ponentially more logic when flattened to two levels, this is
a net benefit. Further, since addressing and control present
large fixed cost, it is beneficial to build larger arrays to amor-
tize out that cost (See Section 6.3). Consequently, it may be
more useful to wrap a computation into one pair of physical
planes rather than to build a cycle of four physical planes.

6. PHYSICAL PROPERTIES

6.1 Array Area
As shown in Figure 1, each basic PLA unit has both litho-

graphic scale support wires and NWs. For brevity we focus
on the configurable cycle variant of Figure 9; this variant
will have a single set of NW rows between precharge contacts
rather than the pair of rows shown in Figure 1. Using:
• Wlitho – minimum lithographic wire pitch
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• Wnano – pitch of NWs
• Na – number of address bits
• Nrow – number of raw row lines placed in array
• Nbuf – number of raw buffer columns
• Ninv – number of raw inverting columns
We have:

Lrow = (Na + 9)×Wlitho

+ 2× (Nbuf + Ninv)×Wnano (1)

Lcolumn = 6×Wlitho + Nrow ×Wnano (2)

Aplane = Lrow × Lcolumn (3)

The 6 lithographic pitches in Equation 2 accounts for the
2 microscale wires above and below the or NWs and a
lithographic spacing between these microscale wires and the
NWs. Similarly, the 9 extra lithographic scale pitches in
Equation 1 account for lithographic wires and spacings at
the ends of the array and between the distinct columns in
the array.

6.2 Yield
To achieve a target PLA size, we will need to populate

the array with a number of spare wires to accommodate
broken wires and stochastic population effects. We use the
different code calculation to compute the population needed
to accommodate stochastic selection, and we use an M -of-N
calculation to compute yield sparing [15].



400000

500000

600000

700000

800000

900000

1e+006

0 20 40 60 80 100 120 140 160 180 200

A
re

a 
pe

r O
R

 te
rm

 (s
q.

 n
m

.)

Net OR terms

Area vs. OR terms

 Share=1
 Share=2
 Share=3

Wlitho = 210nm; Wnano=10nm; Woverlap=1nm; 50%
binate, 25% invert, 25% buffer; 96% plane yield rate

Figure 12: Area per or Term vs. Number of Lines

The whole yield process is best illustrated with an exam-
ple. To yield an array with 60 or terms where 30 of its plane-
to-plane connections are binate (both inverting and non-
inverting), 15 inverting only, and 15 buffered only, we pop-
ulate the array with Nrow = 133 and Ninv = Nbuf = 173.
With a wire and address alignment yield of 80%, our 133
row wires yield us 94 unbroken row wires over 99% of the
time. The 80% yield is calculated based on the length of the
wire and the probability of a bad address alignment [15].
We use Na = 14 address bits which give us 3432 distinct
7-hot codes. Making 94 selections from 3432 codes gives
us at least 90 uniquely coded row wires over 99% of the
time. In the restoration stage, wires may be broken (wire
yield 86% based on height with 133 row wires), wires may
be uncontrollable because the control region overlaps multi-
ple row wires (90% are controllable assuming Woverlap=1nm
and Wnano = 10nm [15]), or wires may have their control
regions aligned with unusable row wires (68%=90/133). To-
gether, this means the yield rate of a restoring wire is 53%.
Consequently, our 173 inverting or buffering inputs provide
us with 75 good wires 99% of the time. Selecting 75 wires
from the 90 good inputs, we expect 45 or more of them to
be unique 99% of the time. With 45 useful buffering and
inverting lines, we can use 30 of each for the binate inputs
and the remaining 15 of each for the buffered only or in-
verted only inputs. At four steps in this process we said we
would get a number of good or distinct wires 99% of the
time. That means we yield this complete assembly 96% of
the time (0.994 > 0.96). In practice, we can run the calcu-
lations described above in reverse in order to determine the
Nrow, Ninv, Nbuf required to achieve a target array shape
and to determine the best number of address bits (Na) or
total row wires (here we used 90 instead of the 60 required)
to minimize area.

6.3 Net Area
Continuing the example, with Wlitho = 210nm (90nm pro-

cess [1]) and Wnano = 10nm, the plane will be 11.7µm wide
and 2.6µm tall. 4.8µm of the width is in lithographic scale
wires, as is 1.3µm of the height. Of the 133 NW rows, only 60
will be used for net logic. Of the 692 = 173×4 NW columns,
only 180 = 45× 4 provide useful restoration. Clearly, most
of the area of the array is going into lithographic and yield
overhead. The total area is 11.7µm × 2.6µm ≈ 3× 107nm2;
the plane supports 60 or terms, making each or term about
500,000nm2.

Figure 12 plots area per or-term versus number of terms
supported for a number of array sizes. In each case, we cal-

half or-term Address or-terms for
pitch Wlitho area (nm2) Share min. array

90nm 210nm 470,000 2 40
65nm 150nm 330,000 2 20
45nm 105nm 240,000 2 20
22nm 50nm 140,000 2 20

Wnano = 10nm; Woverlap=1nm; 50% binate, 25% in-
vert, 25% buffer; 96% plane yield rate

Table 2: Achievable or-Term Area as a Function of
Supporting Lithography

culate appropriate sparing as illustrated in the previous sec-
tion then calculate the area of that plane and divide by the
number of supported or terms to get an area per or term.
The three curves represent different levels of row address
sharing. Here we see there is a definite minimum or-term
area around 60 or-term arrays when we do not share the ad-
dress and around 40 when we share an address unit across
two arrays. The decreasing area per or-term from 10 to 40
or 60 arises from amortizing out the fixed overhead for the
microscale address and control wires. The increasing area
after the minimum comes from decreasing yield probability
for longer NWs and the increased number of restoring wires
needed to support the outputs.

The lithographic overhead wires have a big effect on den-
sity both from the area they consume and because the NWs
must span across them in order to yield. If we use smaller
lithography for the programming scaffolding, the minimum
achievable area will decrease further as shown in Table 2.

The prediction for 4-transistor gate area at the 22nm node
is 300,000-500,000nm2 [1]. A 4-LUT logic block in modest
size arrays runs around 500,000 to 1,000,000λ2 [11]; with
λ ≈ 11nm for the 22nm node, this means a 4-LUT logic
block will be 50–120,000,000nm2. We note the areas of the
22nm 4-LUT and the 4-transistor gate for calibration only.
Section 8 quantifies typical, mapped logic densities.

6.4 Timing
The time for a single plane evaluation (See Figure 6) is:

Tplane = Tprecharge + Tno + Teval + Tab (4)

Precharge just needs to discharge row and column capaci-
tances through a contact (resistance Rc) and an “on” field-
effect NW junction (resistance Ron):

Cwire = max (Crowwire, Ccolwire) (5)

Tprecharge = (Rc + Ron) Cwire (6)

Evaluation in the precharge scheme, charges a number of
rows through “on” diode junctions (resistance Rmem−on):

Teval = (Rc + 2Ron) (Ccolwire + f × Crowwire)

+ Rmem−on × Crowwire (7)

f here is the fanout—the number of rows which use the re-
stored term as input. For the static scheme, we need to make
the static pullup resistance weak (See Figure 2, Section 3.2)
compared to the pulldown resistance through the diode and
the contact:

Rpu ≈ 10 (Rc + 2Ron + Rmem−on) (8)

It has a similar evaluation equation which is roughly an order
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of magnitude slower due to the weak pullup resistance.

Teval = (Rc + Rpu) (Ccolwire + f × Crowwire)

+ Rmem−on × Crowwire (9)

We assume Tno = Tab = Tprecharge. Capacitances, resis-
tances, and other technology parameters are discussed in
[15].

Figure 13 plots the phase time versus fanout for a 60-
or-term plane assuming Rc = 100KΩ and Rmem−on =
100KΩ. Fanout effects are definitely a dominant term such
that speed is roughly proportional to fanout in all cases.
The precharge scheme is an order of magnitude faster than
the static scheme, achieving 1ns phase times for a fanout
of 7. The precharge scheme is viable now if we force logic to
not require selective buffering, perhaps by computing logic
in dual rail form so we always have the true and complement
of every signal in the array.

7. DISCOVERY
Since addressing and restoration is stochastic, we will need

to discover the live addresses and their restoration polarity.
We use the restoration columns (See Figure 1) to help us
identify useful addresses. The gate-side supply (e.g. top set
of lithographic wire contacts in Figure 4) can be driven to
a high value, and we look for voltage on the opposite sup-
ply line (e.g. bottom set of lithographic wire contacts in
Figure 4; these contacts are marked Vhigh and Gnd but will
be controlled independently as described here during dis-
covery). There will be current flow into the bottom supply
only if the control associated with the p-type restoration
wire can be driven to a zero. We start by driving all the
row lines high using the row precharge path. We then apply
a test address and drive the supply (Vrow) low. If the ad-
dress is present, only that line will now be strongly pulled
low. If the associated row line can uniquely control one or
more wires in the restoration plane, the selected wires will
now see a low voltage on their field-effect control regions and
enable conduction from the top supply to the bottom sup-
ply. By sensing the voltage change on the bottom supply,
we can deduce the presence of a restored address. We sense
the buffering and inverting column supplies separately so we
will know whether the line is buffering, inverting, or binate.

We need no more than O
(
(Nrow)2

)
unique addresses to

achieve virtually unique row addressing [14], so the search
will require at most O

(
(Nrow)2

)
such probes. For the exam-

ple in the previous section, we used a Na = 14 bit address

60-or-term 4-in augment
(s, w) 2-in LUT 4-LUT

Design size org. gates +FF +FF

add 3 (2,1) 46 6 3
4 (2,4) 60 8 4
8 (2,8) 125 16 8

alu181 2 (2,2) 155 76 8
enable 9 (2,1) 61+9f 13 9
counter 15 (2,2) 111+15f 25 15
multiply 3×3 (2,1) 62 21 15
register 8×1 (2,1) 78+8f 22 3
file 3×4 (2,1) 78+12f 19 6
shiftreg 60 (2,1) 0+60f 60 5
xor 6 (2,1) 27 2 2

30 (2,5) 145 10 10

s is the number of planes used; w is the number of
wraps. See Section 5 and Figures 10 and 11.

Table 3: Datapath Benchmarks

with 3432 distinct codes. We might thus need to probe 3432
addresses to find the 90 live row wires.

Once we know all the present addresses in an array and
the restoration status associated with each address, we can
assign logic to logical addresses within each plane based on
the required restoration for the output. With logic assigned
to live addresses in each row, we can now use the address of
the producing and consuming row wires to select and pro-
gram a single junction in a diode-programmable or plane.

8. MAPPED LOGIC
To measure the capacity of our PLAs, we map a series

of benchmark circuits and measure the number of 2-input
gates and the number of 4-LUTs it requires to implement
the same benchmark. We use three benchmark sets:
1. Select datapath elements
2. Small FSMs from the IWLS93 benchmark suite [28]
3. PLA Book examples [17]

For PLA mapping, we use espresso to compute 2-level
implementations [2] [33]; for multi-level planes, we use sis

[36], first optimizing the logic with script.rugged, then tar-
geting a given logic depth using reduce depth. We see this
gives us interesting results, but we also expect we can get
better mappings using a more optimized CAD flow. No-
tably, multi-level optimization [30], smarter pterm-covering
[4], and design levelization and balancing [12] [11] [27] should
all help us to pack logic into fewer of these PLA planes.

For the 2-input gates, we use sis to map to the mini-
mal sis library (an inverter, a 2-input nand, and a 2-input
nor); we optimize the logic with script.rugged and map
for minimum area using map -m 0. We use UCLA’s RASP
Suite [7] to map to 4-LUTs.

Table 3 summarizes a set of datapath mappings to a pair
of 60-or-term planes along with the resources required to
map the same datapaths to 2-input gates and 4-LUTs. For
both our PLA and the 4-LUT designs, we include hand-
mapping results when those are better than the CAD re-
sults. Since FPGAs add strategic logic for datapaths (e.g.
dedicated carry logic so an adder bit fits into an augmented
4-LUT), the final column estimates the typical “LUT” count
for datapath augmented 4-LUTs. We show registers sepa-
rately for the 2-input gates (+f in the table), since registers
are typically counted as a few (2–4) 2-input gates.



60-or-term
FSM (s,w) 2-in ratio 4-in ratio

Design Ins Outs S org. gates PLA LUTs PLA

tbk 6 3 32 (8,1) 213 27 98 12
pma 8 8 24 (18,1) 208 12 83 5
s1 8 6 20 (10,1) 188 19 75 8
ex1 9 19 20 (2,1) 186 93 70 35
keyb 7 2 19 (10,1) 184 18 77 8
s420 19 2 18 1/2 (2,1) 67 67 25 25
s208 11 2 18 1/2 (2,1) 67 67 25 25
sse 7 7 16 (2,1) 111 56 40 20

kirkman 12 6 16 (6,1) 139 23 58 10
bbsse 7 7 16 (2,1) 111 56 40 20
cse 7 7 16 (10,1) 178 18 71 7

dk512 1 3 15 1/2 (2,1) 51 51 16 16
mark1 5 16 15 (4,1) 84 21 38 10
ex4 6 9 14 1/2 (2,1) 60 60 20 20
s386 7 7 13 (2,1) 109 54 39 20
bbara 4 2 10 1/2 (2,1) 46 46 17 17
opus 5 6 10 1/2 (2,1) 79 79 25 25
dk17 2 3 8 1/2 (2,1) 56 56 15 15

shiftreg 1 1 8 1/2 (2,1) 11 11 4 4
ex6 5 8 8 (2,1) 83 42 32 16
dk14 3 5 7 (2,1) 72 36 24 12

beecount 3 4 7 1/2 (2,1) 22 22 9 9
dk27 1 2 7 1/2 (2,1) 20 20 5 5
s27 4 1 6 1/2 (2,1) 23 23 8 8

bbtas 2 2 6 1/2 (2,1) 21 21 6 6
mc 3 5 4 1/2 (2,1) 26 26 7 7
lion 2 1 4 1/2 (2,1) 13 13 3 3
dk15 3 5 4 1/2 (2,1) 61 61 19 19
tav 4 4 4 1/2 (2,1) 27 27 9 9

geometric mean 33 11

Restoration: 30 binate, 15 invert, 15 buffer; S=states

Table 4: Mapped FSM Statistics for 60-sterm PLA

Table 4 summarizes the results of mapping all IWLS93
FSMs with fewer than 30 states. We mapped both one-
hot (nova) and dense encodings (nova [35] and jedi [25]
with default options) for each of the design targets (PLA, 2-
input gates, 4-LUTs) and then selected the least area result
for each target. Since some of the FSMs are very small, if
the FSM fits in a PLA half the size of our target PLA, we
normalized it to one of the PLA planes instead of two; we
did not attempt to get any greater measurement granularity
than this half PLA unit. The PLA benchmarks we were able
to map achieved comparable densities to the FSMs shown
in Table 4.

Table 4 shows that we fit about 10 4-LUTs worth of logic
in each, 30M nm2 60-or-term plane for control logic, and
Table 3 shows that our densest datapath mappings provide a
little under 10 4-LUTs worth of logic for a pair of planes. At
60M nm2, a pair of 60-or-term planes is comparable in area
to a single, 22nm 4-LUT (50–120M nm2 from Section 6.3).

Table 3 suggests the densest logic mappings achieve a den-
sity of roughly one hardwired 2-input gate per or term. The
FSMs (Table 4) and 2-level implementations of the datap-
ath elements (Table 3) indicate that we yield about half a
2-input gate per or term. Each or term takes similar area
to a 22nm 2-input gate (Section 6.3).

9. FUTURE WORK
The designs reported here are an early effort to completely

detail a sublithographic PLA scheme. It represents a con-
crete starting point to improve upon rather than a final an-

swer about how to organize sublithographic computation or
the density achievable. The technologies for this scale are
in their infancy and new devices and techniques are rapidly
becoming available. Each advance potentially impacts the
way we want to architect these devices.

Our earlier sketch suggested general ways to achieve ar-
bitrary interconnect using NWs for block-to-block intercon-
nect [13], and we certainly intend to work out details for
providing such general interconnect among sublithographic
PLA cells such as the ones introduced here.

The relative speed numbers for the static and precharge
clocking schemes motivate search for circuits and devices to
enable non-inverting precharge. Further, the robustness and
viability of precharge at this scale needs to be explored.

Faults in the logic during operation are likely at this scale
and even in lithographic logic as it approaches this scale.
We will need to both understand the expected fault rates
and develop and exploit techniques to map logic which is
robust to the expected fault rates.

10. SUMMARY
We have shown how we can use emerging, bottom up, fab-

rication technologies to build PLAs where the key feature
sizes determining device density and operation are defined
without using lithography. This suggests we may be able to
reach down to feature sizes and densities of 10’s of nanome-
ters without requiring lithography at that scale. Based on
the current lithographic support architectures, pitches, and
yield estimates, with 90nm lithographic support, PLA ar-
rays with 40-60 yielded or terms provide the densest un-
mapped logic resources, requiring 500,000nm2 per or term.
Mapped logic suggests we can place the equivalent function-
ality of 10–20 4-LUTs into the area of a single, 2-plane, 60-
term PLA, which is comparable in size to a single 4-LUT in
22nm lithography. With the rapid advance of technology, it
is unlikely the devices ultimately produced will look exactly
like the ones described here, nonetheless, many of the tech-
niques introduced here will likely be important components
in future sublithographic programmable logic designs.
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APPENDIX

A. TECHNOLOGY ASSUMPTIONS
Table 5 summarizes some of the key technology parame-

ters assumed for this analysis along with references.
Resistance For nanotubes, the fundamental limit on
contact resistance is 6.5KΩ and it appears to be possible
to approach this limit [29]; consequently, it should be pos-
sible to decrease contact resistance with further technology
mastery.
Capacitance From [8] the capacitance of a NW junction
is:

Cjunc ≈ 2πεSiO2

L

ln(2h/r)

Where r is the NW radius, h is the distance between con-
ductors, and l is the length of the overlap. For the NW
junctions, we assume: r = 1nm, h = 1nm, L = 2r.

Cnanoj ≈ 2π(3.4× 10−11F/m)

(
2nm

ln(2)

)
≈ 6× 10−19F (10)

We use Cnanoj = 10−18F as a rough approximation here.
For the NW runs over the microwires, L = Wlitho/2 as-
suming half the pitch is in the wire and half in the spacing
between wires. Here height is oxide thickness between the
address lines and the nanoscale core memory wires which is
likely to be 5–10nm (assume h = 5nm).

Cmicroj ≈ 2π(3.4× 10−11F/m)

(
Wlitho/2

ln(2× 5/1)

)
(11)

Assuming the dominant capacitance is junction capacitance
between crossed NW junctions and NW over microwire junc-
tions, we can calculate the nanoscale junction capacitance
(Cnanoj) and nano-micro junction capacitance (Cmicroj) and
estimate the total row and column wire capacitances:

Ccolwire = Nrow × Cnanoj + 2× Cmicroj

Crowwire = Ncolumn × Cnanoj + (Na + 1)× Cmicroj

This assumes we have to charge up all the capacitance as-
sociated with the address lines. We can isolate the address
lines during operation, so that we only pay for two microwire
junctions in the row case as well.
Wire Yield For an N junction long NW to yield, it must
make good contact on both ends and contain no junction
failures along its length:

Pgoodwire = (Pc)
2 × (Pj)

N (12)

[19] reports reliable growth of SiNWs which are over 9µm
long (i.e. no breaks over a distance equivalent to 900 10nm

junction lengths). More recently, Lieber is seeing over 90%
yield of NWs up to 20µm long [24], which would correspond
to Pj > 0.99995.

B. STOCHASTIC SELECTION
Let C be the number of codes in our code space, N be the

number of selection we make (number of wires chosen), and
u be the number of distinct codes appearing in our selection.
We can calculate the probability distribution for the num-
ber of different codes, u, in an array, using the recurrence
relation:

Pdifferent(C, N, u) =(
C − (u− 1)

C

)
× Pdifferent(C, N − 1, u− 1)

+
( u

C

)
× Pdifferent(C, N − 1, u) (13)

The base cases are:
• Pdifferent(C, 1, 1) = 1 (if we pick one thing, we get one

different thing)
• Pdifferent(C, 1, u 6= 1) = 0 (if we pick one, we will get

exactly one different thing)
• Pdifferent(C, 0, 0) = 1 (if we pick nothing, we get nothing)
• Pdifferent(C, 0, u > 0) = 0 (if we pick nothing, we get

nothing)
• Pdifferent(C, N, u < 0) = 0 (we cannot have less than

nothing)
This recurrence counts each code once even if it appears
multiple times, which is what we want if we allow duplicate
codes in the addressing or duplicate restoration.

Since we are generally interested in achieving at least a
certain number of codes, we are interested in the cumulative
distribution function (CDF) for the probability that we have
at least a certain number of codes. We calculate this:

Pat least (C, M, u) =

M∑
i=u

Pdifferent (C, M, i) (14)

Table 1 is generated with C = Ninputs and M = Nrestore;
we set a target for Pat least, 99% in this case, and find the
largest u for which Pat least exceeds the target.

C. N-CHOOSE-M CALCULATION
A common calculation used for defect tolerant design is

the probability that we yield at least M elements form a full
set of N . Assuming each element yields independently with
probability, P , the probability that we will yield M ≤ N
things is:

PMofN =
∑

M≤i≤N

((
N

i

)
P i (1− P )N−i

)
(15)

or term yield is a common example where this calculation
is relevant in our nanoscale PLA. Here, N is the number of
NWs we assemble into the array, M is the number of NWs
we yield, and P is the probability that the NW yields (e.g.
is not broken or shorted; see Equation 12). PMofN in the
equation above, tells us the probability that we will yield
the specified M NWs. In design, we typically pick a target
value for PMofN , such as 0.99, then look for the largest M for
which the calculated PMofN exceeds the target probability.



Symbol Description Value Ref.

Rc micro-to-nanoscale contact resistance 100KΩ [10]
1MΩ [21]

Rmem−on diode “on” resistance 100KΩ [34]
Rmem−off diode “off” resistance >1GΩ [34]
Cnanoj Capacitance of a NW-NW junction 1× 10−18F (text) [8]
Pc Probability of a good micro-to-nanoscale contact > 95% [21]
Pj Probability of a good junction per nanopitch unit length > 0.9999 [19]

Table 5: Key Technology Parameter Assumptions

D. TOLERATING MISALIGNMENT
We likely have little or no control over the alignment of

the NWs relative to each other in the array. We tolerate
this misalignment using three techniques:
1. repeat coding
2. control region size selection
3. multiple voltage control
Repeat Coding For the stochastic restoration wires, we
code as controllable one control region within the height of
the restoration plane. However, the wire will be longer than
the height of the restoration plane as it also extends over the
succeeding or plane and the control ends. We code wires
by repeating the code every restoration plane height. That
way, there will always be a coded region within the height
of the restoration plane. This may also place control regions
within the or plane or on the ends of the wire. Placing it
outside of the NW array is tolerable as it does not interfere
with operation. For some of the memory technologies we
are considering, the memory function will isolate the control
region from the crossed or lines so that it will not interfere
with operation in the or plane.
Control Region Width To tolerate sub bit-pitch mis-
alignments within the control plane, we make the control
region be just over one NW pitch wide. Assuming a NW
pitch of Wnano and a necessary control overlap Woverlap, we
make the control region:

Wctrl = Wnano + 2×Woverlap < 2×Wnano (16)

This guarantees that the control region always overlaps at
least one NW by a length Woverlap. It is possible, that
the control region will overlap two adjacent NWs. When it
overlaps two NWs, we can program both inputs the same so
it is no different from a single connection.

The probability that a control region overlaps multiple
input NWs is:

Pctrl2 =
2×Woverlap

Wnano
(17)

When this does happen, we can use the two lines as one, so,
for the sake of yield calculations, we only discount half the
cases where this occurs, so:

Psingle nw ctrl = 1− Pctrl2

2
= 1− Woverlap

Wnano
(18)

For Section 6, we assumed Woverlap = 1nm. This gives us
Psingle nw ctrl = 0.90 for Wnano = 10nm.
Multiple Voltages At the ends of every row (and col-
umn) NW, we use NW field-effect gating to control static
voltages and precharge operations. The key observation here
is that we can run these control voltages at a different level
from the operational voltages in the array. In particular, we
can pick them to be high enough to exceed the high (strongly

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

Figure 14: Illustration PLA with Broken NWs

doped) threshold in the NW. As a result, these control wires
do not need to be aligned with a lightly doped control region.
They will operate regardless of NW alignment.

E. DISCOVERY AND PROGRAMMING

E.1 Programming
To program any diode crosspoint in the or planes (Fig-

ure 1), we drive one address into the top address decoder
and the second into the bottom. Here the stochastic restora-
tion performs the corner turn for us so that we effectively
place the desired programming voltage differential across a
single crosspoint. We set the voltages and control gating
on the restoration columns to define which programmable
diode array is actually programmed during a programming
operation (e.g. in Figure 4 the contacts marked Vhigh and
Gnd are the control voltages; Vpu and Vpd are the signals
used for control gating).

E.2 Scaling
Note that each NW PLA array is addressed separately

from its set of microscale wires (A0, A1, ... in Figure 1
and Vrow, Vbot, and Vtop in Figure 16, illustrated in Sec-
tion E.3.2). Programming is not effected or complicated by
the cascade structure of the programmed logic. Since the
programming task is localized to each PLA plane, the work
required to program a collection of planes (e.g. Figure 9)
only scales linearly with the number of planes.

E.3 Example
To illustrate the discovery and programming process, this

section walks through the steps involved in discovering and
programing the illustration PLA in Figure 1 to perform a
2-input xor. We will assume two of the wires are broken as
shown in Figure 14 to better illustrate defect handling.

E.3.1 Discovering Present Addresses
First we must discover which addresses are present in each

of the two planes. For this example, we have 4 address lines
for addressing the or-term NWs. We use a 2-hot code,



meaning there are
(
4
2

)
= 6 possible addresses for the or

terms in each plane (1100, 1010, 0110, 1001, 0101, 0011).
So, for each plane, we need to test each of the 6 addresses.

To test for an address’s presence, we:
1. Drive the right end common supply (Vcommon in Fig-

ure 14) to ground, then release it.
2. Drive the address lines (A0, A1, ... ) to the test address.
3. Drive the common row line (i.e. Vrow1 or Vrow2 in Fig-

ure 14) to high.
4. Observe the voltage on the common line (Vcommon).
The common line will be raised to high only if the test ad-
dress is present allowing a complete path between Vrow and
Vcommon. Figure 15A shows an attempt to read the address
1001 on the top plane. Since the 1001 wire is not present,
this results in no current path from Vrow2 to Vcommon and
Vcommon remains low. Figure 15B shows an attempt to read
the address 1100 on the top plane. Since the 1100 wire is
present and unbroken, this does succeed in raising the volt-
age on Vcommon. In Figure 15C, we see that an attempt to
read address 0101 does not raise Vcommon since the wire has
a break in it. After testing all six addresses, we know that
the present and functional addresses in the top plane are
1100, 1010, 0110, and 0011. Similar testing for the bottom
plane tells us the present and function addresses there are
1100, 1010, 0110, and 0101.

E.3.2 Discovering Polarities
Knowing which addresses are present, we can determine

which polarities they provide. We drive each good address
to a low voltage, while keeping the other wires high, and
observe if the output is restored. For each address we:
1. Set the gate-side supplies on the restoration column (Vtop

in Figure 16) to a low voltage.
2. Drive the opposite supplies (Vbot in Figure 16) to a low

voltage and release.
3. Use Vcommon and Vrow to precharge alls lines to a high

voltage. Drive the addresses (A0, A1,...) to all ones dur-
ing this precharge. Note that we drive high from both
sides; this way even wires with a single break are charged
to a high voltage.

4. Release Vcommon, Vrow and return the addresses to zeros.
5. Drive the intended address on the address lines.
6. Drive Vrow to a low voltage.
7. After the row line has had time to discharge, drive the

gate-side supplies on the appropriate restoration columns
(Vtop in Figure 16) to a high voltage.

8. Observe the voltage on the opposite supply (e.g. Vbot)
once the restoration line has had a chance to charge.

Remember the restoration wires are p-type NWs. A high
voltage across their lightly-doped control region will deplete
carries and prevent conduction, while a low voltage will al-
low conduction. In steps 3–6, we guarantee that only the
addressed row is low; all other rows are driven to a high
value. As a result, we will only see conduction between Vtop

and Vbot in a column if the addressed NW controls some NW
in that column.

Figure 16A shows how we test the 1100 wire. As de-
scribed above, we drive only the 1100 wire to a low volt-
age. The restoration columns for this wire are bracketed by
Vtop3/Vbot3 and Vtop4/Vbot4, so we drive Vtop3 and Vtop4 to
high voltages and watch the voltage on Vbot3 and Vbot4. No-
tice that the 1100 NW intersects with two control regions in
restoration column 3 and no control regions in restoration

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

A: 1001 Address (non-present)

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

B: 1100 Address (present)

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

C: 0101 Address (defective NW)

Light grey lines are at ground;
black lines driven to high voltage.

Figure 15: Testing Functional Address Presence

column 4. Consequently, Vbot3 is pulled high while Vbot4 re-
mains low. By convention (See Figures 1 and 4), column 3
is our inverting column. This tells us the 1100 or term can
only be used in its inverting sense.

In Figure 16B we show testing of the 1010 wire. The
1010 wire controls restoration wires in both columns 3 and
4. However, the restoration wire in column 3 is broken.
Consequently only the restoration in column 4 is usable.
Vbot4 is pulled high, but Vbot3 remains low because of the
broken column 3 wire. We conclude that we can use the
1010 or term only in its non-inverting sense.

Figure 16C shows the result of testing the 0110 wire.
There are two 0110 wires in the top plane. Consequently,
when we address 0110 we affect both of them. Since the two
wires have the same address, we will always select them in
tandem. Both or terms are charged low. It further turns
out that there are multiple wires in both column 3 and col-
umn 4 controlled by either of the two 0110 or terms. Both
Vbot3 and Vbot4 are driven high telling us that we can use
both polarities of the 0110 or-term (i.e. it is binate). Test-
ing the 0011 or-term in a similar manner, we learn that it
can only be used in the non-inverted sense.

We can perform similar test for the lower or plane. In this
case, the outputs of this or plane are restored by columns 1



Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

Vtop1 Vtop2 Vtop3 Vtop4

Vbot1 Vbot2 Vbot3 Vbot4

A: 1100 NW (inverting)

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

Vtop1 Vtop2 Vtop3 Vtop4

Vbot1 Vbot2 Vbot3 Vbot4

B: 1010 NW (non-inverting)

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

Vtop1 Vtop2 Vtop3 Vtop4

Vbot1 Vbot2 Vbot3 Vbot4

C: 0110 NW (binate)

Figure 16: Discovering Restoration Polarities

and 2. We drive the high test values into Vbot1 and Vbot2 and
observe the voltages at Vtop1 and Vtop2; the role of top and
bottom supplies are reversed compared to the top or plane
to match the fact that the position of the restoration array
and the succeeding or array are reversed. After performing
the test, we learn the that 1100 and 1010 are binate, 0110
is non-inverting, and 0101 is inverting.

E.3.3 Programming Diode Crosspoints
Knowing which polarities are available from each of the

present addresses, we can program up the intended function.
Figure 17 shows our assignment of known, good or terms

to the xor calculation. We bring in the inputs A and B
on the bottom or terms 1100 and 1010. We need both
polarities of A and B, and we know both of these terms
are binate. We compute A + B on the top or term 1100
knowing it is inverting, and we compute A + B on the top
or term 0110 which is binate so can provide an inverted
output. Finally, we use bottom or term 0110 to or together

A + B and A + B to produce the xor of A and B.
To program up each crosspoint, we must apply suitable

voltages to both the wires in the junction. For example, to
make the restored B an input to the A+B in the top plane,

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

A

B
xor(A,B)

/A+B

A+/B

Figure 17: Assign or-terms for Computing xor2

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

Vtop1 Vtop2 Vtop3 Vtop4

Vbot1 Vbot2 Vbot3 Vbot4

Programmed
   Junction

A: Program B (bottom 1010) to A + B (top 1100) junction

Vrow1

Vrow2

A0 A1 A2 A3 Vcommon

Vtop1 Vtop2 Vtop3 Vtop4

Vbot1 Vbot2 Vbot3 Vbot4

Programmed
  Junctions

B: Program A + B (top 1100) to xor (bottom 0110) junction

Black lines are at suitable programming voltages or
are driven high for control; light lines are at non-
programming voltages.

Figure 18: Programming Diode Junctions

we set the low address to 1010 to select B’s or term and
the high address to 1100 to select the A + B or wire (See
Figure 18A). Similar to polarity testing above, we precharge
the bottom plane wires to high and then drive Vrow1 to low
so that only the 1010 address is low and enables conduction
to the or plane. We drive Vrow2 directly to the low voltage
needed for junction programming. We drive Vbot2 to the
high voltage needed for junction programming, and leave
Vbot1 at a nominal voltage so that we only program on the
non-inverting B input. We keep Vtop3, Vtop4, Vbot3, Vbot4

at nominal voltages so we do not program any junctions in
the bottom-right or plane while we are programming our
intended junction in the top-left or plane.

When we want to program a junction in the bottom-right
or plane, we suitably drive programming voltages on Vtop3

or Vtop4 and keep Vbot1 and Vbot2 at nominal voltages. For

example, in Figure 18B we show programing of the A + B to
xor junction. Here Vtop3 is placed at the high programming
voltage since we want an inverting connection, and Vtop4 is
held at a nominal voltage along with Vbot1 and Vbot2.
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