

General Parallel Computation without CPUs:
VLSI Realization of a Particle Machine

Richard K. Squier, Ken Steiglitz, Mariusz H. Jakubowski

February 6, 1995

Abstract

We describe an approach to parallel computation using particle
propagation and collisions in a one-dimensional cellular automaton us-
ing a particle model — a Particle Machine (PM). Such a machine
has the parallelism, structural regularity, and local connectivity of sys-
tolic arrays, but is general and programmable. It contains no explicit
multipliers, adders, or other fixed arithmetic operations; these are im-
plemented using fine-grain interactions of logical particles which are
injected into the medium of the cellular automaton, and which repre-
sent both data and processors. We sketch a VLSI implementation of a
PM, and estimate its speed and size. We next discuss the problem of
determining whether a rule set for a PM is free of conflicts. In general,
the question is undecidable, but enough side information is usually
available in practice to answer the question in polynomial time. We
then show how to implement division in time linear in the number of
significant bits of the result, using an algorithm of Leighton. This com-
plements similar previous results for fixed-point addition/subtraction
and multiplication. The precision of the arithmetic is arbitrary, being
determined by the particle groups used as input.

1 Introduction

The goal of this paper is to use Particle Machines (PMs) to incorporate the
parallelism of systolic arrays [3] in hardware that is not application-specific

*Richard Squier is with the Computer Science Department at Georgetown University,
Washington DC 20057. Ken Steiglitz and Mariusz Jakubowski are with the Computer
Science Department at Princeton University, Princeton NJ 08544.

and is easy to fabricate. The PM model, introduced in [8, 6, 7], uses colliding
particles to encode computation. A PM can be realized in VLSI as a Cellular
Automaton (CA), and the resultant chips are locally connected, very regular
(being CA), and can be concatenated with a minimum of glue logic. Thus,
many VLSI chips can be strung together to provide a very long PM, which
can then support many computations in parallel. What computation takes
place is determined entirely by the stream of injected particles: there are no
multipliers or other fixed calculating units in the machine; the logic supports
only particle propagation and collisions. So, while many algorithms for a
PM mimic systolic arrays and achieve their parallelism, these algorithms are
not hard-wired but are “soft” in the sense that they do not use any fixed
hardware structures.

An interesting consequence of this flexibility is that the precision of fixed-
point arithmetic is completely arbitrary and determined at run time by the
user. The recent paper [7] shows that FIR filtering of a continuous input
stream, and arbitrarily nested combinations of fixed-point addition, subtrac-
tion, and multiplication, can all be performed in one fixed CA-based PM
in time linear in the number of input bits, all with arbitrary precision. In
Section 6 of this paper we complete this suite of parallel arithmetic opera-
tions with an implementation of division that exploits the PM’s flexibility
by changing precision during computation.

The description of a particular PM includes its collision rule set, which
determines the results of collisions of particles. Because these rules only
partially specify their input, there are rule sets whose rules conflict on the
outcome of some collisions: that is, one rule states that some particle is
present in the outcome, and another rule states that it is not. If, given a
particular set of inputs to the PM, one of these conflicting collisions occurs,
we say the rule set is not compatible with respect to that set of inputs.
The PM model is Turing equivalent, as we show later in this paper, so
the general question of compatibility is undecidable. However, if the set of
inputs is sufficiently constrained, as is usually the case, the constraints can
be used to test compatibility in time polynomial in the number of particles
and rules.

The next section gives a description of the PM model. This is followed
by an outline of an implementation of the model in VLSI and an estimate
of its performance. We then discuss the issue of rule conflict. Finally, we
give a detailed description of an implementation of Leighton’s Newtonian
division algorithm in the model.

particles injected

o= —=—0<=0 O 0

to infinity ———=

Figure 1: The basic conception of a particle machine

2 Particle machines

Figure 1 shows the general arrangement of a PM. Particles are injected
at one end of the one-dimensional CA, and these particles move through
the medium provided by the cells. When two or more particles collide,
new particles may be created, existing particles may be annihilated, or no
interaction may occur, depending on the types of particles involved in the
collision.

The state of cell t of a 1-d CA at time ¢+ 1 is determined by the states of
cells in the neighborhood of cell ¢ at time ¢, the neighborhood being defined
to be those cells at a distance, or radius, r or less of cell ¢. Thus, the
neighborhood of a CA with radius r contains k& = 27 4 1 cells and includes
cell 7 itself.

We think of a cell’s n-bit state vector as a binary occupancy vector, each
bit representing the presence or absence of one of n particle types (the same
idea is used in lattice gasses; see, for example, [2]). The operation of the
CA is determined by a rule, called the update rule, which maps states of the
cells in the neighborhood of cell 7 at time ¢ to the state of cell 7 at time ¢+ 1.

Figure 2 illustrates some typical collisions when binary addition is im-
plemented by particle collisions. This particular method of addition will
be one of two described later when we develop arithmetic algorithms. The
basic idea is that each addend is represented by a stream of particles con-
taining one particle for each bit in the addend, one stream moving left and
the other moving right. The two addend streams collide with a ripple-carry
adder particle where the addition operation takes place. The ripple-carry
particle keeps track of the current value of the carry between collisions of
subsequent addend-bit particles as the streams collide least-significant-bit
first. As each collision occurs, a new rightmoving result-bit particle is cre-
ated and the two addend particles are annihilated. Finally, a trailing “reset”
particle moving right resets the ripple-carry to zero and creates an additional
result-bit particle moving right.

We need to be careful to avoid confusion between the bits of the arith-

f] @ ©- ©-

Figure 2: An example illustrating some typical particle collisions, and one
way to perform addition in a particle machine. What is shown is actually
the calculation 014+ 11 = 100, implemented by having the two operands, one
moving left and the other moving right, collide at a stationary “ripple-carry”
particle. When the leading, least-significant bits collide, ingoing from row 2
to 3, the ripple-carry particle changes its identity so that encodes a carry bit
of 1, and a rightmoving sum particle representing a bit of 0 is created. The
final answer emerges as the rightmoving stream 100, and the ripple-carry
particle is reset by the “equals” particle to encode a carry of 0. The bits of
the two addends are annihilated when the sum and carry bits are formed.
Notice that the particles are originally separated by empty cells, and that all
operations can be effected by a CA with a neighborhood size of 3 (a radius
of 1). 4

metic operation and the bits in the state vector. The ripple-carry adder
is represented by two particle types, the bits of the rightmoving addend
and the rightmoving result are represented by two more particle types, the
leftmoving addend bits are represented by another two types, and the reset
particle is represented by one additional type. Thus, the operations shown
in Fig. 2 use seven bits of the state vector. We’ll denote by C; the Boolean
state vector variable for cell ¢. The individual bits in the state vector will be
denoted by bracket notation: for instance, the state vector bit corresponding
to a rightmoving zero particle in cell ¢ is denoted C;[0gr]. The seven Boolean
variables representing the seven particles are:

C;[0R] rightmoving zero
C;[0r)] leftmoving zero
Ci[1R] rightmoving one
Cil1z] leftmoving one

Ci[+o0] ripple-carry adder w/ zero carry
C;[+1] ripple-carry adder w/ one carry
Ci[=R] rightmoving adder reset

All the particle interactions and transformations shown in the example
can be effected in a CA with radius one; that is, using only the states of
cells t — 1, 7, and ¢+ 1 to update the state of cell ¢. A typical next-state rule
(as illustrated in the first collision in Fig. 2) therefore looks like

C;[0R) Y < (Ci1[1R) A Cil40] A Ciga[12])V (1)

which says simply that if the colliding addends are 1 and 1, and the carry
is 0, then the result bit is a rightmoving 0.

Notice that using two state-vector bits to represent one data bit allows
us to encode the situation when the particular data bit is simply not present.
(Theoretically, it also gives us the opportunity to encode the situation when
it is both 0 and 1 simultaneously, although the rules are usually such that
this never occurs.) It can be very useful to know a data bit isn’t present.

Ci [tol

Cia[lr] CivalL]

Ci [OR]

Figure 3: The logic fragment of an implementation of the rule in Eq. 1. The
conditions create a rightmoving 0.

3 VLSI size and performance estimate

We base our estimate of VLSI size and performance on a straightforward
realization of the rule set as suggested by Fig. 3. In that figure, the rule
in Eq. 1 is implemented directly in random logic feeding the inputs to an
S-R flip-flop that stores one bit of a cell’s state vector. This makes it easy
to map the rules into logic generally; each rule that creates or destroys a
particle sets or resets its corresponding bit. Figure 4 shows the general logic
fanning into a state bit.

In a practical VLSI implementation the rules would probably be com-
bined and realized in a PLA. The following area estimate assumes this is
done. If PMs prove practically useful, it may be worth investing consider-
able effort in optimizing the layout of a PM for a rule set that is sufficiently
powerful to implement a wide variety of computations. After all, this design
need be done only once, and the resulting chip would be useful in many
applications. As with memory cells, only a single cell needs to be designed,
which can then be replicated. The chips themselves can be concatenated to
form very long — and hence highly parallel — machines.

Our layout of a row of cells is shown in Fig. 5. Here each cell has p
bits in its state vector, thus supporting p particle types, and contains a logic
block, a bank of flip-flops, and wiring connecting logic inputs and outputs
to flip-flop inputs and outputs. Our estimate of the area required for these

values from neighborhood cells

|
S R | flip-flop storing
out one bit of one cell

|

Figure 4: A possible layout plan for a PM.

| state J | state J
e - ke
PLA PLA PLA PLA T
< - k - T k-

Figure 5: The general layout of cells in the CA for a PM. The bits in the
state vector are shown as shaded registers. Fach such register supplies data
to the update logic for its own cell, and those of its nearest neighbor cells.
Connections to right neighbors are shown as dashed lines.

elements uses a rough approximation to the space required to route a single
signal wire in modern VLSI [9]: about a = 6A, where A = 0.2u. Thus, a
wiring channel containing n wires we estimate to be n6A across. We allow
four times as much space per signal wire for PLA signal wires, or § = 24\
per PLA wire.

Aslaid out in Fig. 5, a cell requires vertical space for two wiring channels.
In addition, we must fit in the larger of either a bank of p flip-flops or the
vertical span of the PLA. Since we assume a simple layout, the PLA is the
larger structure and we ignore the flip-flops. The PLA contains p input
wires, p/3 from the cell’s own flip-flops and p/3 each from the two neighbor
cells, and p output wires, giving 2p total PLA wires, counting vertically.
The total height of a cell is then (2/3)pa + 2pg3.

Horizontally, a cell must accommodate the PLA, two wiring channels,
and the flip-flops. The PLA requires roughly as many wires as minterms.
Estimating an average of four minterms per output wire, we get 4p horizontal
PLA wires. The width of the flip-flops is about 10 PLA wires. A cell’s width
is then (2/3)pa + 4pp + 105.

Let’s establish the number of particles required, p, for a general PM.
Consider a single track of data. In general for a single track we need data
bits that travel in either direction or remain stationary. This requires six
particles: 0 and 1 moving left, 0 and 1 moving right, and stationary 0 and
1. Three data tracks suffice for all applications we have tried. For each data
track we assume about six operator particles are needed. This gives us p =
36 total operator and data particles. Using the above area estimates and
given a chip 1 centimeter on a side, we find there is room for about 300 cells
on a single chip for a PM supporting 36 particles.

Now let’s estimate the potential parallel performance. Using the multi-
plication scheme shown later in Fig. 8 we need about 2n cells to hold a single
n-bit operand moving either left or right. The processor particles need 2n
cells. This gives 6n total cells between the beginning of one multiply and
the beginning of the next multiply. Supposing we have 16-bit operands, this
means we can fit three 16-bit multiplies operating concurrently on a single
chip. The cell logic is very simple, so a conservative estimate of clock speed
is 100 Mhz. A multiply completes in 2n ticks. This gives us about 3 mil-
lion 16-bit integer multiplies per second per chip. Using logic optimization
and other layout and performance refinements in the chip design, we might
expect to get a factor of 5 to 10 improvement over this estimate.

4 Compatible collision rules

4.1 Collision rules

A set of rules in a PM is a relation between preconditions that determine
the rule’s applicability to collisions and effects that give the outcome of
collisions. The domain is a set of pairs of the form (Pp, Ap), where Pp is
a set of particles that must be present in the neighborhood in order for the
rule to apply, and Ap is a set of particles that must be absent. We refer
to particles in Ap as particle negations, and we consider particle negations
to collide, even though the actual particles are not present. The range is a
set of pairs (Pr, Ar), where the sets Pr and Ag give the particles that are
created and destroyed, respectively.

4.2 Compatibility

When particles collide, two or more collision rules may apply simultaneously
to determine the results. For our purposes the effects of these rules should
not conflict; that is, one such rule should not destroy any particle created
by another. If this condition is satisfied, the results of the collision depend
only on the colliding particles, not on the order of rule application. We
call a rule set of a PM compatible with respect to a set of inputs (or simply
compatible) if every collision that occurs is resolved without conflicts. We
use the term input to include the initial state of the PM’s medium, and all
particles subsequently injected.

Given a PM, we want to be able to determine whether or not its rule
set is compatible. The general problem of determining compatibility turns
out to be undecidable. However, as we will see, if the PM designer provides
certain additional information about the particles, the problem is solvable
in time polynomial in the number of particles and rules.

4.2.1 Rule compatibility is undecidable

Theorem 1 The rule compatibility problem is undecidable.

Proof: A straightforward reduction from the halting problem. Given a Tur-
ing machine M with an initial configuration of its tape, we transform M
into a PM, and M’s tape into this PM’s input, in such a way that M halts
if and only if the PM’s rule set is not compatible.

Let §, I', 6, and h denote M’s set of states, tape alphabet, transition
function, and halt state, respectively. We begin constructing the PM P from
M as follows. For each symbol € T, introduce a new stationary particle
&p. The tape of the Turing machine then maps directly into the medium of
the PM; in particular, the initial configuration of M’s tape corresponds to
the initial state of P’s medium.

We simulate the transition function § with particles and collision rules.
For each state s € 5, create a stationary particle, syy. This particle is de-
signed to perform the function of M’s tape head. Assume that the transition
function is defined as é: S xI' — SxT'U{L, R}), where L and R are special
symbols that indicate left and right movement of the tape head. For all
states s and tape symbols @ such that §(s,z) is defined:

o If §(s,z) = (t,y), introduce a rule that transforms the stationary state
particle sy to the stationary state particle ¢y, and transforms the

symbol particle z, into the symbol particle y,. This rule simulates
M’s changing state and writing a symbol on its tape.

o If 6(s,2) = (t, L), introduce rules that move the state particle sy one
cell to the left and transforms sy into . These rules simulate M'’s
changing state and moving its tape head to the left.

o If 6(s,2) = (¢, R), introduce analogous rules to simulate tape head
movement to the right.

To complete the construction, add the stationary particle corresponding
to M’s initial state to the cell corresponding to M’s initial head position.
The above rules must be compatible, because the medium behaves exactly
like M’s tape and the rules operate according to M’s transition function.
Finally, choose an arbitrary particle z, and introduce two conflicting rules.
One rule transforms the particle representing the halt state of M into w,;
the other rule transforms it into x,’s negation. The complete set of rules is
compatible if and only if M never halts. O

4.2.2 Additional information makes compatibility decidable

Although deciding rule compatibility from only the rule set and the input is
not possible in general, all is not lost. If the PM designer provides complete
information about which pairs of particles can collide, we can determine
compatibility with a simple polynomial-time algorithm. The PM designer
usually has a good idea of which particles can collide and which cannot, even
though computing this information is in general an undecidable problem.
For example, a binary arithmetic algorithm most likely uses two particles
representing a 0 and a 1 that never coexist in the same cell.

The information which the PM designer should provide is an exhaustive
list £ of pairs of the form («, #), where a and § are particles or negations of
particles, and @ and S can collide. We assume that the designer is willing
to guarantee the correctness and completeness of this information, so that
if the pair (a,) is not in the list, then @ and S can never collide.

An easy way to check for rule compatibility is to ensure that each pair of
rules in the rule set satisfies the following condition: if the rules apply to any
collision simultaneously, then the effects of the rules do not conflict. The
rule effects (Py, Ay) and (P, A3) conflict if and only if one rule destroys a
particle created by the other; that is, if 1N Ay # 0 or PoN Ay # 0. Two rules

10

processor
particle

(addend 1][] (addend2]

Figure 6: The particle configuration for adding by having the addends collide
bit by bit at a single processor particle.

with preconditions (Py, A1) and (P, A2) can be applicable simultaneously
only if the following conditions hold:

e The rules do not conflict in their preconditions, that is, Py N Ay = 0
and P2 N Al = @

e The combined preconditigns of the rules contain only pairs (a,) that
can collide; that is, @ € Py U Ay and B € P, U Ay only if (a,) € L.

It is easy to verify that these conditions can be checked in time polyno-
mial in the number of particles and rules.

5 Linear-time arithmetic

We will conclude this paper with a description of a linear-time PM imple-
mentation of Leighton’s division algorithm [4]. Before we discuss division,
however, we briefly review the implementations of addition and multiplica-
tion given in [6, 7].

Note that in all of these implementations, we can consider velocities as
relative to an arbitrary frame of reference. We can always change the frame
of reference by appropriate changes in the update rules.

Figure 6 shows in diagrammatical form the scheme already described
in detail in Fig. 2. Figure 7 shows an alternate way to add, in which the
addends are stationary, and a ripple-carry particle travels through them,
taking with it the bit representing the carry. We can use either scheme to
add, simply by injecting the appropriate stream of particles. The choice
will depend on the form in which the addends happen to be available in
any particular circumstance, and on the form desired for the sum. Note
also that negation can be performed easily by sending a particle through a
number to complement its bits, and then adding one assuming we use
two’s-complement arithmetic.

11

processor
particle
(addend 1) .

]

(addend 2)

Figure 7: An alternate addition scheme, in which a processor travels through

the addends.

processor
particles

[leftmultipicand] O 0 0 000 [rightmultipicand |

Figure 8: Multiplication scheme, based on a systolic array. The processor
particles are stationary and the data particles collide. Product bits are stored
in the identity of the processor particles, and carry bits are stored in the
identity of the data particles, and thereby transported to neighbor bits.

Figure 7 also illustrates the use of “tracks”. In this case two different
kinds of particles are used to store data at the same cell position, at the
cost of enlarging the particle set. This turns out to be a very useful idea for
implementing multiply-accumulators for FIR filtering, and feedback for IIR
filtering [7]. The idea is used in the next section for implementing division.

Figure 8 shows the particle arrangement for fixed-point multiplication.
This mirrors the well known systolic array for the same purpose, but of
course the structure is “soft” in the sense that it represents only the input
stream of the PM which accomplishes the operation.

The reader is referred to [6, 7] for more detailed descriptions and a dis-
cussion of nested operations and digital filtering.

6 Linear-time division

Although division is much more complicated than the other elementary
arithmetic operations, a linear-time, arbitrary-precision algorithm is pos-
sible using the particle model. The algorithm we present here, based on
Newtonian iteration and described by Leighton [4]', calculates the recip-
rocal of a number z. We assume for simplicity that = is scaled so that

'The algorithm described here is actually slightly different in some details, but it is
not hard to verify its complexity and correctness.

12

I

-~
. _ path of y s bits
SL SR
0111000/00/0000 bits of y
1100000(00|0000O0 bits of x,
[] []

D path of X3 bits

—

Figure 9: Initial configuration for division.

% < @ < 1. For an arbitrary division problem, we rescale the divisor by
shifting its binary point left or right, calculate its reciprocal, multiply by
the dividend, and finally scale the result back. Since each of these steps
takes only linear time, the entire division uses only linear time.

The algorithm works as follows. Let N denote the number of bits desired
in the reciprocal. For simplicity, assume N is a power of 2. Let x; represent
the i-th approximation of the reciprocal and y; the divisor, both rounded
down to 2it1 4+ 4 places. Beginning with zp = 1.1 in binary, the method
iterates using x;41 = #;(2 — y;2;), for 0 < ¢ <lg N. At the end of the i-th
iteration, the error is less than 92

The particle implementation of this algorithm carefully coordinates sta-
tionary and moving particles to create a loop. The ¢-th iteration of the
loop performs linear-time, fixed-point additions and multiplications using
21+1 4 4 bits of precision. Marker particles delimit the input number and
indicate the bit positions that define the successive precisions required by
the algorithm.

Figure 9 illustrates this setup, giving the initial template for calculating
the reciprocal of the number 7 to 8 bits of precision, that is, with error less
than 21@. The outer markers enclose the binary numbers yg = 0.111, which
is 7 rescaled to fit the algorithm, and zg = 1.1, the first approximation to
the reciprocal. Additional markers are at bit places 6, 8, and 12 after the
binary point, indicating that three iterations are required, at precisions of
6, 8, and 12 bits. Two consecutive markers terminate the number.

The only moving particles in Fig. 9 are sender particles, denoted by
SL and SR, whose job is to travel through the medium and send data bits
to the left and right to begin an iteration of the loop. (The SL and SR

particles are created by a chain reaction of previous collisions which will not

13

0000

011100000
1 0000

100000300

D ——
0111000

Figure 10: Configuration just before the first multiplication.

Figure 11: Configuration just before subtraction.

-

c
111100000

I

I

! 11100000100
I I I

! 11701010000

0000
0000
0000

be described here.) Also present in Fig. 9 are mirror particles, denoted by
squares, which “reflect” moving data bits; that is, a collision of a moving bit
with a mirror generates a bit moving in the opposite direction and destroys
the original bit.

An iteration of the loop proceeds as follows. First, the sender particles
SL and SR collide with the two markers, as shown in Fig. 9, to generate
two mirrors in place of the markers. Next, 5L moves right, sending bits of
Yo to the left; at the same time, SR moves left, sending bits of g to the
right. The moving bits of the two numbers bounce off the first mirrors, pass
through the second mirrors, and finally bounce off the mirrors represented
by squares in Fig. 9. This prepares the medium for the multiplication yozg.
At this point all four mirrors are transformed to stationary markers. Figure
10 shows the configuration just before multiplication occurs. When the last
bits of xz¢ and yo collide with markers, the multiplication is finished, as
shown in Fig. 11.

The next task is to calculate 2 — ypzp. We do this simply by taking the
2’s complement of ypzp, since 0 < y;z; < 2. For this purpose we generate
a special particle C' when the last bit of yy collides with a marker (see Fig.

Figure 12: Configuration just before the second multiplication.

— -

sL SR
'111100000

I

I

! 11100000100
I I I

! 010110000

0000
0000
0000

14

— -

SL SR
0111000,00/0000

10000103000000
0101100000000

Figure 13: Configuration after the first iteration.

11). The particle C' is similar to a ripple-carry particle (see Figs. 2, 6, and
7). It first adds 1 to the complement of zgyg’s first bit, then moves left
through the rest of the bits, flipping them and adding the carry from the
previous bits. Figure 12 shows the result.

All that remains is to multiply this result by xg. This proceeds in the
same manner as the multiplication of zg by yo. Once thisis done, an iteration
of the loop is complete, and the bits of z; replace the bits of zp. Figure 13
illustrates the configuration after completion of the first iteration.

The remaining iterations proceed exactly as described above, only with
higher precisions, as determined by the markers in the template. When two
consecutive markers are encountered, the division is finished, and we send a
special particle through the template to restore the markers and mirrors for
the next division.

Figure 14 shows a picture generated by a simulation of the division ex-
ample just described. The simulated PM uses 38 types of particles and 79
rules, and is capable of realizing all the applications mentioned in this paper,
including FIR and TIR filtering.

7 Discussion

There are three new contributions in this paper. First, we've described a
CA implementation and VLSI layout for a PM, estimating speed and area.
Then we showed that the general problem of determining whether rules
can ever conflict is undecidable, but also that this is not a serious problem
in practice. Finally, we showed how to implement a linear-time division
algorithm in a PM, complementing a suite of linear-time implementations
of basic arithmetic: addition/subtraction and multiplication/division. As
pointed out in [7], these operations can be nested and combined for parallel
execution in the cells of a PM.

In a way, a PM is a programmable parallel computer without an instruc-
tion set. What happens in the machine is determined by the stream of input

15

space —= 5

S

o : £
E c
o o -9
S -
o ©
S, L LeLeleLetetets 2
Eliseerelti. L, - pu
%o 9 g
I = 4=
= c
. S
IS
S
Q
=
©
c
o
(&
[}
(%]

=— time

. mirror

third iteration

values of x; computation region values of y,

Figure 14: PostScript generated by a simulation of the division implemen-
tation. Fach cell is represented by a small circle whose shading depends
on which particles are present in that cell. For clarity, only every seventh
generation is shown. The example is the one described in the text, 1/7.

16

particles. At this point we have accumulated tricks for translating systolic
arrays and other structures into particle streams, but general problems of
programming a PM, such as designing higher level languages and building
compilers, are unexplored.

The three main advantages of PMs for doing parallel arithmetic are the
ease of design and construction, the high degree of parallelism available
through simple concatenation, and the flexibility of word length — which
depends, of course, only the particle groups entering the machine.

In summary, the particle model gives us a new way to think about parallel
computation. The medium that supports the particles need not be a CA
[5], and even if it is, the implementation need not be in VLSI.

8 Acknowledgement

This work was supported in part by NSF grant MIP-9201484, and a grant
from Georgetown University.

References

1. Cappello, P. R., “Towards an FIR Filter Tissue,” Proc. ICASSP 85, pp.
276-279, Tampa, FL, Mar. 1985.

2. U. Frisch, D. d’Humie’res, B. Hasslacher, P. Lallemand, Y. Pomeau, and
J. P. Rivet, “Lattice gas hydrodynamics in two and three dimensions,”
Complex Systems 1 (1987), pp. 649-707.

3. H. T. Kung, “Why systolic architectures?” IEEE Comput. 15 1 (Jan.
1982), pp. 37-46.

4. F. T. Leighton, Introduction to Parallel Algorithms and Architectures,
Morgan Kaufman Publishers, San Mateo, CA, 1992.

5. N. Margolus, “Physics-like models of computations,” Physica 10D
(1984), pp. 81-95.

6. R. K. Squier and K. Steiglitz, “Subatomic particle machines: parallel
processing in bulk material,” submitted to Signal Processing Letters.

7. R. K. Squier and K. Steiglitz, “Programmable Parallel Arithmetic in Cel-
lular Automata using a Particle Model,” submitted to Complex Systems;
Tech. Rept. CS-TR-478-94, Computer Science Dept., Princeton Univ.,
Dec. 1994.

8. K. Steiglitz, I. Kamal, and A. Watson, “Embedding computation in one-
dimensional automata by phase coding solitons,” IEEFE Trans. on Com-
puters 37 2 (1988), pp. 138-145.

17

9. N. Weste and K. Eshraghian, Principles of CMOS VLST Design, Addison-
Wesley, Reading, MA, 1985.

18

