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ABSTRACT: In this paper, first, an overview is given abou the whole scenario of andogic
CNN computing. Nex, two areas on CNN Gmputing Techndogy are wmnsidered kriefly: (i) the
architedural advances, espedally the variable resolution and adafation in space time, and
value and (ii) the computationd infrastructure from high leve languag and compiler to
physical implementations. Threebasic physical implementations are suppcsed : andogic CMOS,
emulated dgital CMOS and ofical. The computationd infrastructure is the same for all
implementations, except the physical interfaces.

1. Introduction

A few months ago, Intel shipped the first Tera FLOPS supercomputer consisting almost ten thousand 200MHz
Pentium microprocessors. In many image processng applications we redly need this trilli on operations per second,
except the operations are spedal and donot require the 32 Lt floating point acaracy. The dternative is the analogic
CNN array computer performing about Tera eguivalent operations per second, however, on asinge dip.

Ten yeas ago, in the seminal, paradigm forming, and now historic paper L.O.Chua and L.Yang [1] introduced
the Cellular Neural Network (CNN), now we cdl aso Cellular Nonlinea Network, as a 2D or 3D regular array of
locdly interconneded nonlinea dynamic systems cdled neurons, or cdls, whose global functionality is determined
by a small number of parameters. These parameters define the loca interconnedion pattern, cdled cloning template.
Once the cdl is given the doning template, or simply the template, spedfy the operation of the whole aray. The
cloning template is the protagonist in CNN. It is like agene for spatio-temporal dynamics. Using wery smple cdls,
even first order ones, pradicdly al the simple and exotic spatio-temporal dynamic phenomena can be generated by
~engineeing’ the doning template. Like genes, cloning templates can define a whole universe of phenomena.
Designing this template we can enginea this universe. Many useful templates were designed to implement useful
image processng functions and it was siown ealy that quite afew neuromorphic models of the visual pathway can
be represented by CNN models[8]. Dueto locd connedivity, CNN isvery convenient in VLS| design.

The invention of the CNN Universal Madhine achitedure [3] put the CNN dynamics into a different perspedive:
the CNN spatio-temporal dynamics, viathe doning template, becane the @om, the dementary instruction of a stored
program in this new computational paradigm. A new world of analogic dgorithms and software has been developing.

In this paper, first, an overview is given about the whole scenario of analogic CNN computing. Next, two areas on
CNN Computing Technology are mnsidered kriefly: (i) the achitedura advances, espedally the variable resolution
and adaptation in space time, and value and (ii) the computational infrastructure from high level language and
compiler to physicd implementation. Three basic physicd implementations are supposed : analogic CMOS,
emulated digital CMOS, and ogicd.

In sedion 2, the main areas in forming the analogic CNN computing paradigm are described and their relation is
shown. The main message is. threefads and trends, namely, (i) the implementation of morphology and PDE based
agorithms, (ii) the present understanding of the living \isual pathway, espedally the retina, and (iii) the physicd
limitations of computing devices, al prove the nead of this new computational framework. Sedion 3 deds with
natural extension of the CNN-UM architedure to incorporate variable resolution and adaptation in space time and
signal values. In Sedion 4, the computational infrastructure is outli ned; the same high level languege, cdled Alpha, is
used for al the diff erent implementations.



2. Theworld of analogic CNN computing
In Figure 1, the main areas underlying and forming the analogic CNN computer are shown.
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Figure 1. The main interacting areas in forming the analogic CNN computing paradigm




The threemain pill ars are
« the nonlinea spatio-temporal dynamics defined by the CNN (see eg. the very recent acount [29]),
« the CNN-UM architedure [3] as the computing framework and the analogic dgorithms exeauted on this platform,

« the physiologicdly faithful CNN models of the visua pathway, espedally the retina, embedded in the ,,Bionic Eye”
multimodal framework implemented on the CNN-UM [6].

Recattly, it becane dea that the dasdcd and well developed framework in image processng is not enough
powerful to solve mmplex image processng and pettern recognition tasks. The new mathematicd techniques,
mathematical morphology and especially the PDE related methods [22,24], however, need enormous computing
power when implemented on standard, even parallel digital computers. On the other hand, it turned out that most of
these methods are dmost native in the analogic CNN computers[19, 14-16].

Computational complexity has been well studied and is diredly related to the standard digital computers. Recently,
computational complexity studies on reds (due to Blum, Shub,and Smale) challenged this framework by showing its
limits when numericd algorithms on reds are onsidered. The Universal Madine on Integers (UMZ) isreplaced by a
Universal Macine on Reds (UMR) using the so cdled Newton Madhine, which (by nature) remains iterative. The
CNN-UM is, however, a continuous time, continuous value macdhine operating on flows (UMF) . The starting studies
show the relation between UMZ, UMR, and UMF [21].

The first physicd implementations of the CNN-UM architedure [4,5] proved the physicd redizability of the
concept. The 22x20 chip [4] has been able even to robustly classfy dightly different textures [28 The new, more
complex chips [25,26] increase the complexity into the 50x50 array domain and the forecasts for 1999 panting
towards chips over the 10x100 karrier. In addition, the first analog buffer data storage, the ARAM, has aso be
designed [27] providing the omly missgng, non-standard chip in the CNN chipset and Engine Board [7].

The hardware and software development systems and software library provide the same mmputational infrastructure
as for standard digital computing, and the chipset architedure and Engine Board make this technology completely
transparent to dgital systems as well as to bigger sensor arrays, respedively. We will ded with these questions in
more detail sin Sedion 4.

After the first application case studies [17,18,20, etc.], red-life gplicaions has arealy been started using emulators
and prepare the way to products using more cmplex chips and Engine Boards.

3. Variableresolution and local adaptation

In what follows, we ae introducing:
gpatially global Variable Resolution in
e gpace

o time
e signal value, and
e cdl dynamics
aswell as
locally Adaptive Space-variant templates by four ways:
e global template control by downloading images
e timeinvariant local control vialocd template control memories (TCM)
« dowly time varying plasticity vialocd template control signals (TCS)
e real -time local adaptation
It is emphasized that all these fedures are introduced in such a way that the basic advantages of the CNN UM
architedure remains valid. Recent studies on associative memory, leanong, and fuzzy CNN [9,10,17] show the need

for these posshiliti es.



3.1 Variableresolution

Variable resolution is defined as follows:
e gpace

variable grid size (fine/coarse); a few switches are needed in the analogic CMOS implementation, typical
valuesfor thegrid ratiosare 1: 3-5
e time
fast and slow CNN time constants; typical values teyy =1 and 5(10)
e signal value
multi shade , multi spectral (color), multi polarization in the analogic and/or optical implementation,
multiple bit length and exponent length in the emulated digital implementation
e cdl dynamics
complex cells; 1%, 2™, 3% order  or multi-layer first order cells are defined in a complex cell containing
one, two or three state variables (capacitors). In the CNN-UM , the complexity of the extended cells are only
dlightly increased; using more LAM units, it will even remain constant.
3.2 Adaptive space variant templates
The introduction and definition of the locally Adaptive Space-variant templatesis given as follows.
« global template control is made by downloading images, e.g. areas with predetermined different bias
terms.
e timeinvariant local control is made vialocal template control memories (TCM).
The TCM values are calculated by template operations, then used in a Plagticity Rule to determine local template
elements, e.g. local illumination is calculated and set to the local bias terms (z). The key issue is that the number of

independently adapting values are small; instead of 19, one or two. For example, in a 4-element LAM if we have 2

TCM vaues(cl, c2) inaLAM: LAM[14]: a1 a2 ¢l «c2
thenwemay use  eg. z=cl

or AorB=

c2 |cl c2

¢l | aoo or boo | cl

c2 |cl c2

« dowly timevarying plasticity is governed by local template control signals (TCS).

During, or within, a finite potentiation time Tp, a Potentiation Rule operator (implemented in the LAOU) will
determine the TCS value. Then this value is used in the Plasticity Rule to determine the change of the template
element values. For example, decreasing or increasing the template value via the TCS, as a result of Short Term
Potentiation (STP) or Long term Potentiation (L TP) in neuromorphic models as typical Potentiation Rules.

Asin case of TCM, thereisonly one or two TCS vaue. For example, in a 4-element LAM we may have one TCM
and one TCS value:

LAM[1-4]: al a2 c1 pl
TCM TCS



The Potentiation Rule operator is implemented in the Locd Analog (Output) Unit, e.g. by a Potentiation Rule
circuit controlled by the CNN cdl variable (input, state, or output), and resulting in the Template Control Signal p1.
Again, p1 controlsthe template elements locally via the Plasticity Rule.
ereal - time local adaptation means the locd template ntrol signal ads immediately, for example,
thelocd ill umination value antrols the bias term
4. Computational infrastructure
The analogic CNN computers are built up using the CNN Chip set architecture shown in Figure 2.
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Figure 2. The CNN Chipset Architecture
This architedure when implemented as a self contained Engine Board or Engine on a Chip or an Engine Board
conneded to a PC, will be programmed by the high level analogic CNN language, cdled Alpha. The same Alpha
source @de is used for all other CNN implementations, including a single CNN-UM chip, an emulated digital CNN-
UM chip, or a software simulator, €tc..



For the time being, the CNN Applications Development Environment and Toolkit (CADETWin ) [11] and the
CNN Chip Prototyping System (CCPS) [12] are the designer’s frameworks andtools for using the Alpha language.
On Figure 3 we show the various levels of descriptions and controls representing an analogic CNN a gorithm.
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Figure 3. The levds of the software andthe wre engines

On the lowest level, the chips are embedded in their physical environment The AMC code will be transated into
firmware and electrical signals.

The CNN chips can ke tested and pototyped for specific applications by using the CNN Chip Prototyping
System. The key advantage of this systemisthat it isinvariant for al different chips, except the Platform hosting the
chip (or chipset). This Platform has an interface (CNN Physical Interface, CPl), CNN chip designers can use it to



design their own Platforms and then the whole asena of Alpha programs, subroutines, etc. can be used to program
their chips.
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