
SYSTEMATIC HARDWARE ADAPTATION OF

SYSTOLIC ALGORITHMS

Miguel Valero-Garcia, Juan J. Navarro
Jose M. Llaberia and Mateo Valero

Dept. Arquitectura de Computadores
Facultad de Informhtica (UPC) Pau Gargallo 5

08028 BARCELONA (SPAIN)

ABSTRACT

In this paper we propose a methodology to adapt Systolic
Algorithms to the hardware selected for their implementation.
Systolic Algorithms obtained can be efficiently implemented
using Pipelined Functional Units. The methodology is based on
two transformation rules. These rules are applied to an initial
Systolic Algorithm, possibly obtained through one of the
design methodologies proposed by other autors. Parameters for
these transformations are obtained from the specification of
the hardware to be used. The methodology has been
particularized in the case of one-dimensional Systolic
Algorithms with data contraflow.

1. lNTRODUCTION

Systolic Algorithms @As) exhibit some features that make them
suitable for a direct hardware implementation (VLSI/WSI).
Specificaliy, SAs are highly paralleUpipelined algorithms, specified
on the basis of simple operations (fine granularity), with an high
degree of homogeneity in the operations and regularity in the
communication pattern. When an SA is implemented in hardware,
then a Systolic Array Processor (SAP) is obtained [ll.

The early SAs were obtained, probably, in an heuristic way 121.
They are SAs oriented to matrix problems (matrix multiplication,
LU decomposition, etc). Later, automatic methodologies to design
SAs have been proposed. The benefits of a design methodology are,
among others, a savings in design time, the correctness of designs,
and the possibility to obtain several solutions and choose the best
according to a given criterium.

Any methodology uses some representation of the computation
to be performed (signal flow graphs [3], [4], algorithms with loops
151, recurrences [61, [7], parallel programming languages [8], or
data dependency graphs [9]). SAs are obtained through systematic
manipulations of the chosen representation. In [lo] a survey of
proposed methodologies can be found. An up-to-date version of this
paper appears in [ll].

This work ums supported by CAICYT under contract PA85-
0314.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and tbe title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a Ice and/or specific permission.

In general, SAs obtained through these methodologies show
some features which trouble their.direct and efficient hardware
implementation. Among them, we point out the following:

a) SAs are problem-size-dependent, that is, the number of cells of
the SAs depends on the size of the problem to be solved.

b) SAs have simple synchronization, that is, it is assumed that
any cell spends the same time (a systolic cycle) to perform any
operation, in spite of the fact that some operations can be more
complex than others.

Feature (a) represents an evident drawback, because the number of
processing elements (PEs) in an SAP is fixed and the size of the
problems can be variable. This problem can be solved by
partitioning the SA. Particular solutions to the partitioning
problem have been presented in [12], [13] and [14], and more
general solutions in [15], [16] and[l7].

An SA with simple synchronization may exhibit two mayor
drawbacks:

For a given implementation, some operations (square roots,
divisions,etc) may require more time to be performed than
others (multiplications, additions, etc), due to its complexity. If
the SA is directly implemented, then the time required to
perform the slowest operation becomes the cycle time. In this
case, cells that perform simpler operations will be idle during a
part of every cycle. We have not found, up to the present, any
report dealing with this problem that we call cycle-level
unbalanced load.

The SA can not be eff%iently implemented using Pipelined
Functional Units (PFLJs). This kind of units can be used to
increase the throughput of the system. Two-level pipelined
SAs, that can be efliciently implemented using PFUs, are
described in [181 and 1191. In [20] a technique is proposed to
transform SAs with simple synchronization into two-level
pipelined SAs. This technique was applied only to SAs without
data contraflow.

In this paper we present a technique which permits to solve
systematically, any of the above mentioned problems. Some
previous results appear in [21]. This technique uses two
transformations. The first one is based on the retiming and
slowdown concepts [3], [22]. The second one is based on coalescing
[231. We propose a model to represent Si4s in order to permit the
formalization of these transformations. ‘This model improves the
one proposed in [221. Algorithms are proposed to determine the
transformations that allow us to obtain cycle-level balanced SAs
efficiently implementable using PFUs. More precisely, the model
and transformations are particularized in the case of one-
dimensional (1D) band SAs with data contraflow.

1D band SAs with data contraflow are efficient for solving
problems such as: band triangular systems of linear equations [l],
LU decomposition [ll or QR decomposition [241. For any of these
problems, dense SAs without data contraflow can also be found.

0 1989 ACM 0884-7495/89/0000/0096$01.50 96

In 1D dense SAs without contraflow for the above problems,
matrices involved in the computation enter the cells by rows or
columns. Every cell must perform complex operations (square
roots, divisions) in some cycles, and simpler operations
(multiplications and additions) in other cycles. Dense SAs are
easily partitioned. Typically, matrices are partitioned into square
blocks and partial results are combined to produce the final result.
SAS without data contraflow can be easily modified to use
efficiently a second level of pipeline if the cells are implemented
using PFUs.

On the other hand, in 1D band SAs with data contraflow,
matrices enter the cells by diagonals. In this case only one cell
Performs complex operations. So, band SAs with data contraflow
require less hardware to be implemented. However, partitioning
the SA is not intuitively simple and the use of PFUs is more
difficult due to the existence of feedback cycles. Efficient solutions
to the partitioning problem can be found in [24], [25] and [26]. In
this paper, automatic techniques are given to solve the problems
associated with the use of PFUs in the design of the PEs.

This paper is structured as follows: Section 2 presents the
model proposed for the description of SAs. In section 3,
transformations applied to SAs are enunciated. In section 4, we
propose an algorithm to adapt an SA to the hardware used to
implement its cells. This algorithm uses transformations described
in section 3. In this section, some restrictions are imposed to the
hardware in order to facilitate the use of transformations. In
section 5 an improvement is proposed to obtain more efficient
algorithms. In section 6, restrictions imposed in section 4 are
eliminated. In section 7. a final improvement is proposed which will
permit to apply our methodology to a wide set of SAs.

2. MODELLINC OF SYSTOLIC ALGORITHMS

An SA is a set of cells interconnected through unidirectional links.
Each cell is also possibly communicated with the outside world
through I/O unidirectional links. The cells perform operations on
data arriving every cycle through input links. Every cell is busy
during each cycle in which it performs an operation. In the
proposed model for SAs, we assign these cycles to communication
links, and it is assumed that any operation is performed in zero
time. Results of operations are sent to other cells, or to the outside,
through output links in every cell. To synchronize the whole
computation performed by the SA, a time delay is associated with
each link. The value of this delay is the number of cycles required
to traverse the link. We assume that every cell performs the same
operation each cycle (time-homogeneous SAs). Furthermore, we
suppose that only one link, at most, in each direction exists
between any pair of cells is the SA. These restrictions are imposed
here just in order to simplify notation, and they could be easily
eliminated.

Any SA, and in particular, an 1D band SA with data
contraflow, can be modelled by the tuple:

A=(w,I,O,R,E,S,k)

and by the definition of operations performed in each cycle by every
cell. The meaning of each element in the tuple is the following:

w is the number of cells of SA A.

Z is the set {Zl ..Ip}, with p being the number of links entering
into the SA from the outside. Ii is the data sequence
{I$I)J,(Z),..} which inputs to the SA through the j-th input
link.

0 is the set {Ol..O,}, with q being the number of links leaving
the SA. Oj is the data sequence {0,{1),0J{2),..} which outputs
the SA through the j-th output link.

R and E are matrices with elements in the form of: X&i) = 2’
duJor X(i,j> = 0 [22]. Matrix R has w-by-w elements. The value

rfij) is the delay associated with the link from cell j to cell i. If
such link does not exist, then R&j) = 0. Matrix E has w-by-p
elements. The value e&j) is the number of cycles from the
beginning of the SA operation until cell i receives the first data
item in the Zj sequence. If cell i receives no data from I, then
EfijJ = 0.

Matrix S has w-by-q elements in the form of S(ij) = ZNLJ’ or
S&j> = 0. The value s(ij) is the number of cycles until cell i
produces the first data item in Oj. If cell i produces no data for
Oj, then Sfi$ = 0.

k is the slow [3] of the SA. A k-slow SA can solve k equal and
independent problems in an interleaved way.

In most cases, the SA has a regular NO structure, that is, only data
{IJI). l,ik f l), 1,{2k + 1)...} are valid data (data which influence the
final result). Analogously, only data {O,(f), OJk f IJ,O,tZk + 2) . ..}
are valid results.

Operations performed by every cell in each cycle can be
described in several ways (algorithmically, graphically, etc). In our
case, we use a graphic notation, but this decision does not affect the
methodology at all.

AS an example, we show the model for an 1D band SA with
data contraflow to solve the band triangular system of linear
equations Lx = 6. This SA is shown in figure 1 .a. The model is:

w = bandwidthofmatrix L (8 in theexample)

k=2

AiJ = i+6 iC[1..81

d8,9) = 14

E(iJ] = 0 iC[1..8],jCI1..9l,i+j and (iJl# (8,9]

s(8,l) = 14

S(i,l) = 0 iED.. and i* 8

r(i,i+l) = 1 and rfi+l.il= 1 if(1..71

R(iJ) = 0 ijC[l..S], i+j+l and j* i+ 1

Ii(kt+U = lt+i,+l t>O ; Zi(t) = 0 otherwise iCD..81

I,(kf+l) = b,+I t 20 ; I,(t) = 0 otherwise

O,(kt+l) = zt+, t 20 ; O,(t) = 0 otherwise

cell 1 performs a division in euery cycle

cell i (i+ 1) performs an innerproduct sfep in euery c~c&

This SA, proposed in (11, can also be obtained through any design
methodology. It exhibits the drawbacks mentioned in section 1:

a)

b)

The number of cells (w=8] is equal to the bandwidth of
matriz L. In a practical case, the number of PEs of an SAP
is fixed and, likely lesser than w.

It is assumed that any operation requires one cycle to be
performed. In this case, divisions, performed in cell 1, are
more time consuming than inner product steps, performed
in the rest of cells. In a direct implementation of the
algorithm, the cycle time would be fixed by the time
required to perform a division.

3. TRANSFORMATION RULES FOR SYSTOLIC
ALGORITHMS

In this section we describe two transformation rules which will
permit to obtain SAs efficiently implementable in hardware. The
formulation of these rules is based on the model presented in the
previous section. The rules have been particularized in the case of
1D SAs.

91

time needed to perform every operation for a given hardware to
implement the cells. The rule is:

SAA’=(w’, I’, 0’ , R’ , E’ , S’ , k’) performs the same
computation as A = (w, Z, 0, R, E, S, k) if:

A kusa reguZarll0 structure

w’ = w

k’=ck

E’=D.@

S’ =S=D-1

R-z DR=D-’

Z’,(k-t+l) = Zi(kt+l) i E[l..pl and t zz 0

O’,(k’t+lJ = Oi(kt+l) ic[l..ql and t20

Any matrix of the form % is defined as: Xc&j1 = Z-d’2’ if X&i) =
Z-<u’ or xf(i,j) = 0 if X(i,j) = 0. D is a diagonal matrix with w-by-w
elements in the form of D&i) = Z-di. The values c and di can be any
of those belonging to the set of rationals. Values c and di
(i c [Z..wJ are the parameters of rule 1.

2: Rule

This rule is based on coalescing. Its objective is to eliminate the
inefficiency of a k-slow SA, with a regular I/O structure, in which
every cell performs one valid operation only one out of every k
cycles. The rule allows to transform an SA A’(k’-slow) into an SA
A*, which performs the same computation, requiring the same
number of cycles, but using a lesser number of cells (w*). Cell q of
A* will perform operations assigned to p(g) adjacent cells of A’.
That will be possible if the p(q) adjacent cells of A’ perform their
operations in different cycles. The values of p(q) (q C fZ..w*lJ are
the parameters of rule 2. These values must satisfy the following
condition:

UF

2 p(q)= w’
q=l

Cell q of A* will perform operations assigned to cells a(q). bfq) of A’,
where:

q-1
a(n) = 1+ 2 p(i) and b(q) = a(q) + p(q)- 1 Q cD..w*l

i=l

Rule 2 can be formulated as follows:

LetA’beanSArepresentedbyA’=(‘w’,I’,O’,R’,E’,S’,kl.
We define Z’(i) as the number of cycles a data item requires to
travel from cell 1 to cell i in SA A ‘:

la)
‘1$3 x3

l

$3
173

l

1

$2

*
.

151

.

* .
l

Cl

Gl .
1;1

* 24:
22 : 23 : .

*
$2

(2
I .

il 1;1 .
b3

l

27 : 2 : l

G

26 : 25 :

142

132
122

(b) 192
162

x2
l

172 l l

162 * .
162 161 Xl

* 171 .

. 161
!51 . hi c *

!31
141 28

on
L

l

121 I,

111
. b2

24 . .

i-l
T(i)= z r’ (j+lJ) ic[l..w’l

j=l

If A’satisfies condition:

Z’(i)modk* # T(~)modk’ ijC[a(q)..b(q)l,i#j and Q C[l..w*l (1)

then applying rule 2, with parametres p(q) to A’we obtain a new
SA A* = (w*, I*, O*, R+, E*, S *, k*) which performs the same
computation as A’. Elements in the tuple modelling A* are
obtained by the following expressions:

e*(q,q) = minp,qkqj e’(i.i) q c[l..w*l

e*(w*,w*+l) = e*(w’,w’+l)

s*(w*,l) = s’(w ‘,l)

Figure 1. (a) ID SA for band triangular system of linear
equations, (b) SA after applying rule 1, and(c)
SA after applying rule 2.

Rule 1. A

Rule 1 is equivalent to transformations presented in [221. It is
based on theconcepts of retiming and slowdown [31. The rule allows
to obtain an equivalent SA by resynchronizing the original one. In
this new SA, cycles in which data arrive to cells and delays between
cells have been modified. These new delays will serve to model the

98

SAA T*(q+l,q) = r’(a(q+ M(q)); r*(q,q+ 1) = r’(b(q),a(q+ 1))

q CIl..w*-11

I* (1+1) = l’jV&-+l) a t+e*(q,q)-e’(Q) = Rk’
q

iC[a(q)..b(q)],q C[l..w*] and tr0

k* is the number of different problems that can be solved by SA A*
in an interleaved way. An algorithm to obtain k* is described in
[271. This value is not necessary to achieve our goal.

Figure 1.b shows the SA obtained by applying rule 1 with
parameters c=2 and di = -(i-l) fif[l..8]) to the SA shown in figure
1.a. The new SAisI-slow. Delays between cells and the structure of
input data sequences have been changed according with
expressions described in this section. Now, applying rule 2 with
parameters p(l) =3, p(2) =3 and p(3) =2 we obtain a new SA A*
shown in Qure l.c. This SA has only 3 cells. Using a counter
module k’=4, initialized to zero, it is possible to determine, in every
cycle, the operation to be performed by each cell as well as the data
involved. These data can arrive from the neighbour cells or from
operations performed by the cell in previous cycles. That is the
reason for the feedback links. These links represent
communications between cells of A: assigned by coalescing, to the
same cell of A*. The input data sequences to each cell of A* have
been obtained by interleaving data sequences in SA A ! A more
detailed description of the procedure to obtain this structure can be
found in [271.

Note that, in the previous example, rule 2 could have been
applied with parameters p(q) = k’=4. For these values of the
parameters p(q), the number of cells of A* is minimum (w* = w Ik 1
and the utilization of every cell is maximum (each cell performs one
valid operations every cycle).

4. ADAPTING SYSTOLIC ALGORITHMS TO THE
HARDWARE

Transformation rules presented in the previous section can be used
with different goals in mind (automatic SA partitioning, SA
adaptation for its execution in Distributed Memory Multiprocessor
Systems, etc). In this section we show how to use these rules to
adapt SAs to the hardware selected to implement their cells.
Specifically, a method is proposed to implement 1D band SAs with
data contraflow using PFLJs efficiently.

Figure 2 synthesizes graphically the proposed methodology.
Using a description of the hardware, parameters for rules 1 and 2
are obtained. These rules are then applied to the initial SA A.
Using the resulting models for A’and A* and the description of the
hardware, the structure and control of the SAP is automatically
obtained. In this section we will see how to obtain an SA A* with a
minimum number of cells (w* = w Yk 1. So, parameters for rule 2 are:
fin1 = k’(q C fl..wYk!7) and it will be necessary to find the
parameters for rule 1.

We define OPi as the operation performed by cell i of the initial
SA A. This operation produces two results. One of them is sent to
cell i +I (or to the outside) and the other is sent to cell i-1 (or to the
outside). We need some kind of representation of the hardware to be
used in order to implement each cell. We propose a couple as a
model of the hardware:

H= (RT,L)

RT is a vector of w reservation tables. Reservation table RTi
describes how the stages of a pipelined multifunctional unit
(PMU) are used to perform OPi. We suppose that the PMU is
able to perform any of the w operations OP1.. OP,.

P
(CA) “y t ALGORITHM - lXARDWARE

SAA*-

Figure 2. Use of transform&ion rules to a&pt
systolic algorithms to the hardware
selected to implement their cells

L is a matrix with w-by-w elements in the form of L&j) = ZuU’
or L&j> = 0. The value Kij) is the number of cycles required by
the PMU to obtain, by performing OPj, the value to be sent to
cell i. Ifcellj produces no values for cell i then L&j) = 0.

To apply rule 2, it is necessary to fulfil condition (1) described in
section 3. But, if PMUs are used to impIement each cell, this
condition is not sufficient. It is necessary also to guarantee that
there will not be conflicts in the use of the stages of the PMUs. In
our case, p(q) = k’ (q E [l..w*fi. So, reservation tables for the k’
operations assigned to each cell of A* must allow that any two
operations can be initiated, in successive cycles, without conflicts.
This restriction obviously influences the design of the PMUs to be
used. Henceforth, we will call this restriction as Rl.

As an example, figure 3 shows the hardware selected to
implement SA in figure 1.a. To perform divisions required in cell 1,
the division inversion algorithm [281 is applied, as shown in the
following expression:

Q = $ = -AR(2 +RB)

where R is an approximation of value -II% obtained by indexing a
lookup table with some bits of B. If we use two J-stages pipelined
multipliers and one Z-stages pipelined adder then a division
requires 8 cycles, if we disregard the time to access the lookup
table. Reservation table in figure 3.a shows how this operation is
performed. Using the same kind of multipliers and adders, an inner
product step can be performed in 5 cycles as shown in figure 3.b.
Note that reservation tables in figure 3 satisfy restriction Rl.

The model for the hardware to be used is completed by giving
the following values:

U2.1) = 8

I(i+l,r3 = 0 iC[2..w-11; Ki,i+l)= 5 iE[l..w-11

L(iJ) = 0 otherwise

Now, we need to obtain the parameters of rule 1 which is necessary
to adapt SA A t.o the hardware. These parameters must satisfy the
following conditions:

condition (a):

In the resulting SA A ‘, the delay associated with a link from a cell
to any of its neighbours must be, at least, equal to the number of
cycles required by the former to produce a value to be sent to the
later. Moreover, this value must be, at least 1 to avoid data
broadcasting. For the case of ID band SAs with data contraflow,
this condition can be enunciated as follows:

(a.1) r’(i,i+l) = di+cr(i,i+l)-di+I 5 mal:(l,&,i+l)) i6[l..w-ll

(a.2) r*(i+l,i) = di+l+cr(i+l,i)-di 2 max(lJ(i+I,il) iC[l..w-11

99

RB 2+RB

F
L
A

E

E
L

AR AR(2 + RB)

(a)

W

Figure 3. A possible hardware to
implement: (a) divisions,(b) inner
product steps.

condition (b):

The first data item in any input sequence to A’ must not arrive to
the cells before the SA computation starts. In our case, this
condition can be expressed as follows:

a#)=0 ifCNT=B; s#.):= 1 otherwise

s&)=0 ifCNT=B; s&l:= 1 otherwise

Figur
(b.11 e’(Q) = di + c&i) 2 0 i c[l..w]

(b.2) e’(w,w + 1) = dw + c-&,w+ 1) zz 0

condition (c);

This condition is derived from the particularization of condition (1)
described in section 3, for the case of 1D band SAs with data
contraflow, and assumingp(q) = k’. In this case:

i-l i-l

~(9 = x r’(j+lJ = 2 (dj+l+cr(i+lJ~-dj) icIl..m]

j=l j=l

The condition is:

(c) Z’(i) mod k ’ f T(I] mod k ’

ijc[(g-l)k*+l..qk’],itj and q <[l..b]

Algorithm 1 can be used to find a set of values (c,db which satisfy
conditions (a), (b) and (c). In the obtained solution, c has the
minumum possible value. There can be different valid solutions. It
is possible also that no solution exists, if we use the minimum value
for c. In this case, solutions must be found by increasing the value
of c. This increase represents a loss of parallelism, and
consequently, the resulting SA A* will require more cycles than A’
to obtain the same final result.

Once values (c,di) are obtained, then rule 1 and rule 2 are
applied to A. From the models of A’, A* and the hardware used, a
simple algorithm presented in [27] obtains the SAP structure and
control. Figure 4 shows the internal structure and control for PE 1
abtained by applying the method to SA in figure 1.a and using the
hardware described in figure 3.This PE initiates divisions when the
CNT is 6 and inner product steps otherwise.

s&)=3 otherwise
I

.e4. Internal structure and
control for PE 1 of SAP to
solve a band triangular
system of equntions.

5. TRANSMITTENT DATA FLOWS

SAs obtained by applying rule 2 (as the one shown in figure lx)
allow high hardware utilization, which tends to 1, when the
initiation phase has been completed (and all the cells begin to
perform valid operations). However, the initiation phase requires
many cycles. Most of these cycles are the result of the unnecessary
retention suffered by some data items inside the cells. For instance,
in figure l.c. each element of vector x computed in cell 1 is held in
this cell during &‘=4 cycles before it is sent to cell 2. This value
could be sent to cell 2 as soon as it is computed. Thus, the initiation
phase could become shorter.

This innefficiency appears when, in the initial SA A, there is a
transmittent data flow. Data in a transmittent data flow do not
suffer any change during its travel through the cells. This problem
can be solved by appropriately applying rule 1 to A.

In this section we consider the case of an 1D band SA with data
contraflow in which there is a transmittent data flow. Data in this
flow are generated at one end of the SA and travel to the other end
without modifications. If data in the transmittent data flow go from
cell 1 to cell w then, in the model of the hardware to be used, we
have:

Z(i+lJ = 0 it[2..w-11

If data in the transmittent data flow go from cell w to cell I then we
have:

I(i,i+l) = 0 if[l..w-21

We will show how to solve the first case. The second one can be
solved in a similar way. We will assume also, as in the previous
section, that pfg) = k’ (q f /l..w*]). Now, the parameters of rule 1
must satisfy the following conditions:

loo

(c&l) di + cr(i,i+l)--d,+l 5 max(l,l(i,i+l)) iE[l..w-11

(a.2) di+l +cr(i+1,c?-di 2 max(l,I(i+l,fi)

iC[l..w-l] and i isnot amultipleofk’

(a.31 dgk.+l + cr(i+lJ - d,g-l)k.+lz
j=(g-l)k’+l

zr nax(I,.!((q-l)k’+2,tq-I)k’+l))

W’
q Eli.. F-11

Conditions (a.1) and (a.2) are similar to those appearing in section
4. Condition (a.3) indicates that the minimum delay associated to
the path from cell (q-l)k’ fl to cell qk’ tl in A’fq C [l..w*-11) is
equal to the number of cycles needed by the former to produce a
value which will be sent through this path. So, after applying, cell
q-l of AC will send data to cell q as soon as possible. On the other
hand, parameters d; must satisfy conditions (b) and (c) as described
in section 4.

The algorithm to obtain parameters for rule 1 is a slightly
different version of algorithm 1. Sentences (3) and (4) in procedure
find-initialparameters of algorithm 1 must be replaced now by
the following ones:

fori:=ltow-ldo
If i is not a multiple of k ’

then di+l := max (l,l(i fl,i)J-cr(i f I,i) +d,

forq:= 1 tow’tk’-1 do
dktg+l:= max(l,lKq-1)k’ +2,(q-l)k’ fl))f&+l)kv+l

qk’
- x cdj+lj)
j=(q-lJk’+l

This set of values are obtained by replacing the sign 2 for = in
expressions (a.2) and (a.3). Sentences (16), (1’7) and (18) in
procedure find-new-parameters must be replaced by:

if not impossible
then fo:m: = i to r(q)-1 do

,,,+I := d,+max (l,l(m+ I ,m))-cr(m+l ,mI

As an example, applying rule 1 with parameters c=2, dl =O,
dz = -1, cl3 = -2,d4 = -5,ds = -6,de = -7,d7= -10,anddg = -11,
to the SA shown in figure 1.a we obtain SA in figure 5. A delay of -1
cycle is associated with link from cell 3 to cell 4 and link from cell 6
to cell 7. This delay is represented by means of a white rectangle. A
negative delay does not make any physical sense. However, SA in
figure 5 must be understood in the following way: a value sent to
the right by cell 1 is received at the same time, one cycle later, by
cells 2 and 4, and 2 cycles later by cells 3, 5 and 8. Applying now
rule 2 with parameters p(l) =3, p(2) =3 and p(3) =2 we obtain an
SA similar to that shown in figure l.c. However, in this case, cells 2
and 3 receive the iirst value from the North 2 and 3 cycles sonner
respectively.

There is another source of innefficiency when applying rule 2.
With reference to figure l.c, cell 1 can not perform the first valid
operation until it receives bl. This value requires 21 cycles to reach
cell 2 from cell 8 in spite of the fact that it is not modified during its
travel. This problem can be solved bypassing the firsts values of B
so that the cells can initiate operations as soon as possible.

122
.
l

Cl

‘3.2

.
Gl

‘$2

l

Gl

162
. .
1;1

‘$2

.

1;1

$2

*

Gl

Figure 5. Applying rule 1 when there is a
transmittent data/low

6. IMPLEMENTATION WITH MINIMUM HARDWARE

Restriction Rl, described in section 4, can force to use more
hardware than is strictly necessary to implement each operation.
For example, as figure 6 shows, a division can be implemented with
just one multiplier and one adder, in the same number of cycles as if

two multipliers and one adder were used. However, if this
implementation were used, then restriction Rl would not be
satisfied and rule 2 could not be applied as described in section 4.
In this section we propose an algorithm to determine the
parameters of rule 1 when the used hardware does not satisfy
restriction RI. In this case, it will not be generally possible to
assign k’cells of A’to every A* cell . The proposed algorithm also
obtains the parametersp(q) for rule 2.

Solutions to this problem can be found by adapting results of
previous works [291,1301. In these works, methods are proposed to
optimize the execution of a given set of operations in a PMU. In our
case we know that:

a) the order in which operations must be initiated is fixed by
the SA.

b) the initiation sequence must be periodically repeated,
depending on the slow of the SA.

c) due to data dependencies, the initiation of operations must
be separated in time by a minimum number of cycles.

On the other hand, an additional restriction is imposed to the
solution of our problem. We will not allow a PMU to initiate more
than one operation per cycle. The objective of this restriction is to
limit the required bandwidth when implementing each ceI1.

Our first step is to evaluate the number of adjacent cells of A ’
that can be assigned to each A* cell , that is, the parameters of rule
2. Then, the cycles in which every operation must be initiated are
obtained. These values will serve to determine the parameters of
rule 1. Without any lack of generality, we describe the method by
applying it to cell 1 ofA*. This cell will execute OP1, OPz,...

Suppose that c is evaluated as described in algorithm 1. So, k’
= kc. Suppose also that every PMU hasp stages and that it is able
to perform any of the w operations of SA A. Let R’l’i be the
reservation table to execute OFi, using the PMU.

We define MU(i,mj as the number of marks in the m-th row of
RTi. It is possible to assign, at most, s operations to cell 1 of A* if,
for any of the p stages of the PMU, the number of marks in
reservation tables of these operations is not greater than k.’ So, e
satisfies the following condition:

8 $+I
mu<=l z MU(+) s k’ and maXPm=, x M&m) > k’

i=l i=l

Value s is a maximum for parameter p(f) fixed from the
reservation tables. A maximum for the MAL (minimum average
latency) [301 of the PMU is s/k ‘.

101

RT. RT, RT. RTa I RB AR AR(2+RBl

2+kB

Figure 6. Reservation tuble to implement a
division using just one multiplier
and one adder

It is possible that not all of these s operations can be assigned
to cell 1 of A*. To determine the real value of p(l) we use the
reservation tables and the static collision matrices. Suffice it to
apply the theory described in 1301, taking into account features (al,
(b) and (cl of our problem.

Let CMi be the static collision matrix associated to OPi. To
obtain this matrix it is necessary to consider feature (bl, that is, OF,
must be initiated every k’ cycles. Moreover, all the elements in the

first column of every CM will be TRUE to avoid the initiation of
more than one operation in the same cycle.

Suppose that OPi has been initiated in a given cycle and the
dynamic collision matrix (DCM) of the PMU for this cycle, has been
obtained. Now, we decide when OPi+l can be initiated. Due to (cl,
this operation can be initiated x-l cycles after OPi if:

(1) x-l 2 I(i+lJ

(2) r-l + I(i,i+l) S R’

(3) DCM (i+ 1,~) = 0

Conditions (11 and (2) are due to data dependencies between OPi
and OPi+r and between OPi+l and OPi, respectively. Condition (3)
must be satisfied to avoid conflicts in the use of the stages of the
PFU.

If we decide to initiate OPi+l x-l cycles after OPi then the new
DCM must be obtained by ORing , bit-by-bit, CMi+l with the DCM
associated to the PMU when OPi was initiated, rotated x-1 columns
left. This rotation in necessary to take into account feature (b).

Due to the fact that the initiation sequence is finite and
periodical, the typical modified state diagram appearing in [301,
which represent states of the PMU (nodes) and transitions (edges),
becomes, in our case, a tree. Each node at level i in the tree
represents a possible initiation of OPi. From every node at level i
there are as many edges to nodes at level i fl as valid initiations
exist for OPi+l. The number of levels of the tree is the value ofp(l),
the number of A’ cells assigned to cell I of A*. Any path in the tree
with size p(l) gives a possible initiation sequence for the p(2)
operations.

In order to improve the PMU efficiency it is possible to modify
the reservation tables by using the method of delay insertion [301.
Moreover, in our case, a little increase of value c (which implies an
increase of k’) can result in an increase of the number of cells
assigned to each A* cell.

Figure 7 shows a simple example of this procedure. Figure 7.a
shows the reservation tables to implement the 4 cells of an SA.
Values of matrix L, needed to complete the hardware model, are
also shown. Suppose that k’ = 8. Then only 3 cells, at most, can be
assigned to cell 1 of A*. Figure 7.b shows the static collision
matrices for these 3 operations and figure 7.c shows the resulting
tree. In this case, the 3 operations can be assigned to cell 2 of A*.
OPz must be initiated 5 cycles after OPl and OP3 2 cycles after OPz.

Algorithm 2 synthesizes the proposed procedure. It can be used
to obtain the parameters for rules 1 and 2 that must be used to
adapt SA A to the hardware.

CM, CM2

(b)

k)

Figure 7. Example ofprocedure described in section
6: (a) model for the hardware to be used,
(b) collision matrices, fc) state obtained.

7. NON-TIME-HOMOGENEOUS SYSTOLIC ALGORITHMS

The methodoly presented in previous sections can be applied to SAs
in which each cell must perform always the same operation
(time-homogeneous SAs), though different cells can perform
different operations (non-spatial- homogeneous SAs).

Non-time-homogeneous SAs appear frecuently in the
literature. For instance, in the systolic ring for triangular system of
equations proposed in 1201, every cell must perform divisions in
some cycles and inner product step in others. Non-time
homogeneity appears also is most cases when applying DBT
patitioning [14].

Non-time-homogeneous SAs can be easily treated by the
proposed methodology. Let OPi,l,..,OPi,ni be the ni different
operations performed by cell i during the !jA computation. Let RTij
be the reservation table to implement OP,j. We define RTi as the
reservation table obtained by ORing the ni reservation tables
associtated with cell i. Now, using RTi as the reservation table for
cell i, algorithms presented in previous sections can be used. This
simple procedure can be successfully applied, specially if
reservation tables associated with a cell are similar. This fact can
be easily achieved for typical operations appearing in
non-time-homogeneous SAs.

8. CONCLUSIONS

Generally, SAs Design Methodologies proposed in the literature
start working from a specification of the problem to be solved, but
do not take into account any implementation restriction.

102

In this paper we have proposed a technique that can be used to
adapt automatically an SA to the hardware used to implement it.
This technique permits to obtain SAs with any of the following
features:

a1 number of cells independent of the problem size,

b) different time consuming operations,

c) two-level pipelined

The technique is based on two transformation rules and a set of
algorithms that use these transformations. Specifically, algorithms
have been particularized to obtain efficiently implementable, two-
level pipelined 1D band SAs with data contraflow. As an example,
an SA to solve band triangular system of equations is presented.
This kind of SAs can not be obtained through any other design
methodology proposed up to now.

The methodology is generalizable to any other kind of 1D SAs
as well as 2D SAs.

Transformation rules described in this paper can also be used
for automatic partitioning of SAs. The basic idea consists on
applying rule 1 with parameter:

1 N
c=-r-1

k w

where N and R are. respectively, the number of cells and the slow of
the original SA and w is the number of cells of the target one. Rule
2 is then applied with parameters:

p(q)= + qc [l..wl

At present, we are developing software tools based on the results of
this work. These tools will permit to design automatically efficient
SAPS.

REFERENCES

111

PI

I31

141

I51

Kl

171

I81

Dl

H.T. Kung and C.E. Leiserson. “Systolic Arrays (for VLSI), ”
Sparse M&ix Proc. 1978 1979, Society for Industrial and
Applied Mathematics (SIAM), pp. 256-282. (A slightly
dserent version appears in the text Introduction to VLSI
Systems, Section 8.3. C.A. Mead and L.A. Conway, eds.,1980,
Addison-Wesley, Reading, Mass.).
H.T. Kung, “Why Systolic Architectures?,” Computer, Vol. 15,
No. 1. Jan. 1982, pp. 37-46.
C.E. Leiserson and J.B. Saxe. “Optimizing Synchronous
Systems,” Proc. 22nd Annual Symp. on Foundations of
Computer Science, Oct. 1961, pp. 23-36.
S.Y. Kung, “On Supercom
Array Processors,” Proc. IE Ep

uting with SystolicWavefront
E Vol. 72, No. 7. July 1984.

D.I. Moldovan, “On the Design of Algorithms for VLSI Systolic
Arrays,“Proc. IEEE,Vol. 71, No. 1, pp. 113-120,1983.

~n%%%current Equations ” 11 th Int ’ 1 Symp.
“Automatic Synthesis of Systolic Arrays form

Architecture, pp. 208-214, IEEE & ACM, June 1984.
Computer

G.J. Li, B.W. Wah, “The Design of Optimal Systotic Arrays,”
lE&.~Trans. on Computers, Vol. C-34, No. 10, Jan. 1985, pp.

M. Chen, “Synthesizing VLSI Architectures: Dynamic
Programming Solver,” Int’ 1 Conf. on Parallel Processing,
1986, pp. 776-784.
I.V. Ramakrishnan and D.S. Fussell, “On Mapping
Homo eneous Graphs on a Linear Array-Processor Model,”
Int’l %nf Parallel Processing 1983 pp. 440-447.

[lo] J.A.B. Fortes, K.S. Fuand B.W. Wah, “S stematic Approaches
to the Desi ity
Proc. Znt’l CF

of Algorithmically Spec led Systolic Arrays,”
onf Acoustic, Speech and Signal Processing, 1985,

pp. 8.9.1-8.9.5.
[l l] J.A.3. Fortes, K.S. Fu and B.W. Wah. “Systematic Design

Approaches to Algorithmically Specified Systolic Arrays,”
Computer Architecture Concepts and Systems, North Holland
1988, pp. 455-494.

[12] D. Heller, “Partitionin
Arrays,” Chapiter 11 of 5

Big Matrices for Small Systolic
LSI and Modern Signal Processing,

S.Y. Kung, H.J. Whitehouse and T. Kailath eds. 1985,
Prentice-Hall, Englewood Cliffs, N.J., pp. 185-199.

[13]R. Schreiber and P.J. Kucks, “Systolic Linear Algebra
Machines in Digital Signal Processing,” Chapiter 22 of VLSI
and Modern Signal Processing, S.Y. Kung, H.J. Whitehouse
and T. Kailath eds. 1985, Prentice-Hall, Englewood Cliffs,
N.J., pp.389-405.

[14] J.J. Navarro, J.M. LLaberia and M. Valero, “Partitioning: An
Essential Ste in Mapping Algorithms Into Systolic Array
Processors, 4 omputer, Vol. 20, No. 7, July 1987, pp. 77-89.

[15] D.I. Moldovan and J.A.B. Fortes, “Partitioning and Mapping
Algorithms Into Fixed Size Systolic Arrays,” IEEE Trans. on
Computers, Vol. C-35, No. 1, Jan. 1986, pp. l-12.

[16]H.W. Neils and E.F. Deprettere, “Automatic Desi n and
Partitioning of SystolicWavefront Arrays for VLSI,” (?ircuits
Systems SignalProcess, Vol. 7, No. 2,1988, pp. 235-252.

[171 H. Moreno and T. Lan
k

“Graph-based Partitionin of Matrix
Algorithms for Systo lc Arrays: Application to % ransitive
Closure,” 1988 Int l Conf. on Parallel Processing.

118) H.T. Kung, L.M. Ruane and D.W.L. Yen, “Two-Level Pipelined
S stolic Array for Multidimensional Convolution,” Image and
kJ. won Computing, Vol. 1, No. 1, Febr. 1983 pp. 30-36

[19] D.W.L. Yen and A.V. Kulkarni, “Systolic Processing and an
Implementation for Signal and Image Processing,” IEEE
Trans. on Computers. Vol. C-31, No. 10, Oct. 1982, pp. lOOO-
1009.

1201 H.T. Kung and M.S. Lam, “Wafer-Scale Integration and Two-
Level Pipelined Implementation of Systolic Arrays,” Journal of
Parallel and Distributed Processing, Vol. 1, No, 1,1984.

f21] M. Valero-Garcia, J.J. Navarro, J.M. LLaberia and M. Valero,
“Systematic Desi
with Data Contra !Y

of Two-Level Pipelined Systolic Arrays
ow,” Proc. IEEE lnt’l Conf. on Circuits and

Systems 1988. DD. 2521-2525. .__
I22lH.T. Kung and W.T. Lin, “An Algebra for Systolic

Comoutation.” Elliotic Problem Solvers II. Academic Press
1984; pp. 32-63. *

[23] C.E. Leiserson, “Area-Efficient VLSI Computations,” PhD
dissertation, Departament of Computer Science, Carnegie-
Mellon University, Oct. 1981, Published in book form as part
of the ACM Doctoral Dissertation Award Series by the MIT
Press, Cambridge, Massachusetts, 1983.

(241 N. Torralba and J.J. Navarrq,
Arra

“A One-Dimensional Systolic

7
s for Solving Arbitrarily Large Least Mean Square

Prob ems, “Proc. Int’l Conf. on Systolic Arrays. May 1988 pp.
103-112.

1251 J.J. Navarro, J.M. LLaberia and M. Valero, “Computing Size-
Independent Matrix Problems on Systolic Array Processors,”
13th Int’l Symp. Computer Architecture, 1986, pp. 271-279

[26] J.J. Navarrq, J.M. LLeberia and M. Valero, “Solving Matrix
Problems,,wwlth No Size Restriction, on a Systolic Array
g;r. Int 1 Conf. Parallel Processtng, Aug. 1986, pp. 676-

[27lM. Valero-Garcia, J.M. Llaberia and J.J. Navarro,
“Considering Implementation Features in the Design of
Systolic Array Processors,” Internal Report, RR 88/01,
Facultad de Informatica Barcelona, Spain.

[28] Floating Point Division/ Square Rootl IEEE Arithmetic WTL
1032/1033, Application Note, Weitek, 1983.

1291 C.V. Ramamoorthy, “Pipeline Architecture,” Computing
Surveys, Vol. 9, No. 1, March 1977, pp 61-102.

1301 P.M. Kogge, “The Architecture ef Pipelined Computers,”
Hemisphere Publishing Corporation, 1981.

ALGORITHM 1

I* Algorithm 1 finds parameters c and di for rule 1 assuming that
parameters for rule 2 are p(9) =k’ (9 E fl..w*l). First, the
algorithm finds a set of values which satisfies condition (a)
described in section 4. Then, these values are successively modified
until they satisfy condition (c). Finaly, a simple correction of the
values is applied to fulfil condition (b). */

103

Procedure find-initial-parameters

I* This procedure find a set of values which satisfy condition (a) ‘1

begin

/*Adding expressions (a.11 and (a.2) we obtain the minimum
possible value for c *I

W-l max Cl ,I (i,i f I)) f max(l,l (i + 1 ,O)
(1) c:= max (___-__-__-_-__-__ -__ ____--_-___-___--_-_______________)

i=l r(i,i+l)+ r(i+l,i)

c-9 dl:=O

I* We assign values to d; by replacing the sign 2 for = in
expression (a.2) *I

(3) fori:=ltow-ldo
(4) d, ,+I := max(l,lfi+l,i))-cr(i+l,i) + di

/* This solution re
to the links going F

resents the assignation of the necessary delays
rom right to left of the SA. Similary, delays can

be assigned to the links going from left to right *I

end

Procedure check-condition (p, ok)

begin

/* This
x

rocedure, not shown here, checks condition (cl. If it is not
satisfie thenp takes the value of the index of the cell which causes
conflicts *I

end

Procedure find-newwrameters (p,impossible)

begin

I2
k’: =ck
q:=(p-l)divk’+l

/* Cell p of A ’ will be assigned to cell q of A* *I

afq) := (q-1)k + 1
p(q) := o(p)+k’-1

:;o;!= FALSE
while not stop do
begin

di:= difl

I* This increment of d, represents the transfer of one
delay unit from the link going from cell i to cell i-f to
the link going from cell i-l to cell i. It is necessary to
check if this transfer is possible, that is, if this delay
unit exists */

ifdi + crfi,i-1) - dim1 + max(l,l(i-1,i)) 5 k’
then begin

stop : = TRUE
impossible : = FALSE

end
else begin

i:= i-1
ifi =aJq)

then begin

/* It is not possible to
avoid conflicts between
operations assigned to
cell q of A* *I

end
end

stop : = TRUE
impossible : = TRUE

end

(16) ifnot impossible

i:i1
then for m : = i to w-l do

d,,,+l:= d, + max(l,l(m+l,m))-cr(m+l,m)

end

Procedure fltqarameters

&I’*’ procedure modifies parameters in order to satisfy condition

begin

(1) d: = min cirn!; (di+ce(i,i)), d,+ce(w,w +I))

13;
fori:= 1 towdo

di : = dimd

end

begin I* Algorithm 1 */

I2
find-initial>rameters

I:]

repeat
check-condition (p, ok)
ifnot ok

8
the? find_newgarameters (p, impossible)

g

;ntl ok or tmpossrble
0

then fitsrameters

end

ALGORITHM 2

/* This algorithm obtains parameters for rules 1 and 2 if restriction
Rl is not satisfied by the hardware. *L/

begin I* Algorithm 2 *I

(1)
w-l max (1,l (i,i f 1)) i- max(l ,I (i +l ,i))

c:= max (___---------____________________________--------------)
i=l r(i,ifl)+ rfiflj)

k’:= kc
q:=l
a(q):= 1
stop: = FALSE
while not stop do
begin

Select b(q) which satisfies

P b(q)
max B MU(i.m) 5 k’ and
m=l i=afq)

MU(i,.m) > k ’ or b(9) = W)
m=l i=afq)

Obtain the tree for cell
7

of A* and select a
maximum size path. Let, p q) be the number of
operations in the initiation sequence associated
with the selected path

Mq) : = a&J +Pfq)-l

Let r’(a (q) + $a (q) +-i-l) be the label of edge from
node at level I to node at level i+l in the selected
path (i E tl..piqh11)

ifMq) = w
then begin

stop: = TRUE
w*:=q

end
else begin

a(q+l):= Mq)i-I
r’Mq+U, b(q)):= l(a(q+l).MqN

end9..=4+1

end
dl:=O
fori:=ltow-ldo

di +I : = r ‘(i + 1 ,i) f di-cr(i + 1 ,.i)
Pori:=ltawdo

di : = di-d

I* The value of 4 is defined in algofithm 1 iI/
2 $ell q ofA* will perform operations asslgned to cells afqj..WqJ of

end

104

