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ABSTRACT 

In this paper we propose a methodology to adapt Systolic 
Algorithms to the hardware selected for their implementation. 
Systolic Algorithms obtained can be efficiently implemented 
using Pipelined Functional Units. The methodology is based on 
two transformation rules. These rules are applied to an initial 
Systolic Algorithm, possibly obtained through one of the 
design methodologies proposed by other autors. Parameters for 
these transformations are obtained from the specification of 
the hardware to be used. The methodology has been 
particularized in the case of one-dimensional Systolic 
Algorithms with data contraflow. 

1. lNTRODUCTION 

Systolic Algorithms @As) exhibit some features that make them 
suitable for a direct hardware implementation (VLSI/WSI). 
Specificaliy, SAs are highly paralleUpipelined algorithms, specified 
on the basis of simple operations (fine granularity), with an high 
degree of homogeneity in the operations and regularity in the 
communication pattern. When an SA is implemented in hardware, 
then a Systolic Array Processor (SAP) is obtained [ll. 

The early SAs were obtained, probably, in an heuristic way 121. 
They are SAs oriented to matrix problems (matrix multiplication, 
LU decomposition, etc). Later, automatic methodologies to design 
SAs have been proposed. The benefits of a design methodology are, 
among others, a savings in design time, the correctness of designs, 
and the possibility to obtain several solutions and choose the best 
according to a given criterium. 

Any methodology uses some representation of the computation 
to be performed (signal flow graphs [3], [4], algorithms with loops 
151, recurrences [61, [7], parallel programming languages [8], or 
data dependency graphs [9]). SAs are obtained through systematic 
manipulations of the chosen representation. In [lo] a survey of 
proposed methodologies can be found. An up-to-date version of this 
paper appears in [ll]. 
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In general, SAs obtained through these methodologies show 
some features which trouble their.direct and efficient hardware 
implementation. Among them, we point out the following: 

a) SAs are problem-size-dependent, that is, the number of cells of 
the SAs depends on the size of the problem to be solved. 

b) SAs have simple synchronization, that is, it is assumed that 
any cell spends the same time (a systolic cycle) to perform any 
operation, in spite of the fact that some operations can be more 
complex than others. 

Feature (a) represents an evident drawback, because the number of 
processing elements (PEs) in an SAP is fixed and the size of the 
problems can be variable. This problem can be solved by 
partitioning the SA. Particular solutions to the partitioning 
problem have been presented in [12], [13] and [14], and more 
general solutions in [15], [16] and[l7]. 

An SA with simple synchronization may exhibit two mayor 
drawbacks: 

For a given implementation, some operations (square roots, 
divisions,etc ) may require more time to be performed than 
others (multiplications, additions, etc), due to its complexity. If 
the SA is directly implemented, then the time required to 
perform the slowest operation becomes the cycle time. In this 
case, cells that perform simpler operations will be idle during a 
part of every cycle. We have not found, up to the present, any 
report dealing with this problem that we call cycle-level 
unbalanced load. 

The SA can not be eff%iently implemented using Pipelined 
Functional Units (PFLJs). This kind of units can be used to 
increase the throughput of the system. Two-level pipelined 
SAs, that can be efliciently implemented using PFUs, are 
described in [181 and 1191. In [20] a technique is proposed to 
transform SAs with simple synchronization into two-level 
pipelined SAs. This technique was applied only to SAs without 
data contraflow. 

In this paper we present a technique which permits to solve 
systematically, any of the above mentioned problems. Some 
previous results appear in [21]. This technique uses two 
transformations. The first one is based on the retiming and 
slowdown concepts [3], [22]. The second one is based on coalescing 
[231. We propose a model to represent Si4s in order to permit the 
formalization of these transformations. ‘This model improves the 
one proposed in [221. Algorithms are proposed to determine the 
transformations that allow us to obtain cycle-level balanced SAs 
efficiently implementable using PFUs. More precisely, the model 
and transformations are particularized in the case of one- 
dimensional (1D) band SAs with data contraflow. 

1D band SAs with data contraflow are efficient for solving 
problems such as: band triangular systems of linear equations [l], 
LU decomposition [ll or QR decomposition [241. For any of these 
problems, dense SAs without data contraflow can also be found. 
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In 1D dense SAs without contraflow for the above problems, 
matrices involved in the computation enter the cells by rows or 
columns. Every cell must perform complex operations (square 
roots, divisions) in some cycles, and simpler operations 
(multiplications and additions) in other cycles. Dense SAs are 
easily partitioned. Typically, matrices are partitioned into square 
blocks and partial results are combined to produce the final result. 
SAS without data contraflow can be easily modified to use 
efficiently a second level of pipeline if the cells are implemented 
using PFUs. 

On the other hand, in 1D band SAs with data contraflow, 
matrices enter the cells by diagonals. In this case only one cell 
Performs complex operations. So, band SAs with data contraflow 
require less hardware to be implemented. However, partitioning 
the SA is not intuitively simple and the use of PFUs is more 
difficult due to the existence of feedback cycles. Efficient solutions 
to the partitioning problem can be found in [24], [25] and [26]. In 
this paper, automatic techniques are given to solve the problems 
associated with the use of PFUs in the design of the PEs. 

This paper is structured as follows: Section 2 presents the 
model proposed for the description of SAs. In section 3, 
transformations applied to SAs are enunciated. In section 4, we 
propose an algorithm to adapt an SA to the hardware used to 
implement its cells. This algorithm uses transformations described 
in section 3. In this section, some restrictions are imposed to the 
hardware in order to facilitate the use of transformations. In 
section 5 an improvement is proposed to obtain more efficient 
algorithms. In section 6, restrictions imposed in section 4 are 
eliminated. In section 7. a final improvement is proposed which will 
permit to apply our methodology to a wide set of SAs. 

2. MODELLINC OF SYSTOLIC ALGORITHMS 

An SA is a set of cells interconnected through unidirectional links. 
Each cell is also possibly communicated with the outside world 
through I/O unidirectional links. The cells perform operations on 
data arriving every cycle through input links. Every cell is busy 
during each cycle in which it performs an operation. In the 
proposed model for SAs, we assign these cycles to communication 
links, and it is assumed that any operation is performed in zero 
time. Results of operations are sent to other cells, or to the outside, 
through output links in every cell. To synchronize the whole 
computation performed by the SA, a time delay is associated with 
each link. The value of this delay is the number of cycles required 
to traverse the link. We assume that every cell performs the same 
operation each cycle (time-homogeneous SAs). Furthermore, we 
suppose that only one link, at most, in each direction exists 
between any pair of cells is the SA. These restrictions are imposed 
here just in order to simplify notation, and they could be easily 
eliminated. 

Any SA, and in particular, an 1D band SA with data 
contraflow, can be modelled by the tuple: 

A=(w,I,O,R,E,S,k) 

and by the definition of operations performed in each cycle by every 
cell. The meaning of each element in the tuple is the following: 

w is the number of cells of SA A. 

Z is the set {Zl ..Ip}, with p being the number of links entering 
into the SA from the outside. Ii is the data sequence 
{I$I)J,(Z),..} which inputs to the SA through the j-th input 
link. 

0 is the set {Ol..O,}, with q being the number of links leaving 
the SA. Oj is the data sequence {0,{1),0J{2),..} which outputs 
the SA through the j-th output link. 

R and E are matrices with elements in the form of: X&i) = 2’ 
duJor X(i,j> = 0 [22]. Matrix R has w-by-w elements. The value 

rfij) is the delay associated with the link from cell j to cell i. If 
such link does not exist, then R&j) = 0. Matrix E has w-by-p 
elements. The value e&j) is the number of cycles from the 
beginning of the SA operation until cell i receives the first data 
item in the Zj sequence. If cell i receives no data from I, then 
EfijJ = 0. 

Matrix S has w-by-q elements in the form of S(ij) = ZNLJ’ or 
S&j> = 0. The value s(ij) is the number of cycles until cell i 
produces the first data item in Oj. If cell i produces no data for 
Oj, then Sfi$ = 0. 

k is the slow [3] of the SA. A k-slow SA can solve k equal and 
independent problems in an interleaved way. 

In most cases, the SA has a regular NO structure, that is, only data 
{IJI). l,ik f l), 1,{2k + 1)...} are valid data (data which influence the 
final result). Analogously, only data {O,(f), OJk f IJ,O,tZk + 2) . ..} 
are valid results. 

Operations performed by every cell in each cycle can be 
described in several ways (algorithmically, graphically, etc). In our 
case, we use a graphic notation, but this decision does not affect the 
methodology at all. 

AS an example, we show the model for an 1D band SA with 
data contraflow to solve the band triangular system of linear 
equations Lx = 6. This SA is shown in figure 1 .a. The model is: 

w = bandwidthofmatrix L (8 in theexample) 

k=2 

AiJ = i+6 iC[1..81 

d8,9) = 14 

E(iJ] = 0 iC[1..8],jCI1..9l,i+j and (iJl# (8,9] 

s(8,l) = 14 

S(i,l) = 0 iED.. and i* 8 

r(i,i+l) = 1 and rfi+l.il= 1 if(1..71 

R(iJ) = 0 ijC[l..S], i+j+l and j* i+ 1 

Ii(kt+U = lt+i,+l t>O ; Zi(t) = 0 otherwise iCD..81 

I,(kf+l) = b,+I t 20 ; I,(t) = 0 otherwise 

O,(kt+l) = zt+, t 20 ; O,(t) = 0 otherwise 

cell 1 performs a division in euery cycle 

cell i (i+ 1) performs an innerproduct sfep in euery c~c& 

This SA, proposed in (11, can also be obtained through any design 
methodology. It exhibits the drawbacks mentioned in section 1: 

a) 

b) 

The number of cells (w=8] is equal to the bandwidth of 
matriz L. In a practical case, the number of PEs of an SAP 
is fixed and, likely lesser than w. 

It is assumed that any operation requires one cycle to be 
performed. In this case, divisions, performed in cell 1, are 
more time consuming than inner product steps, performed 
in the rest of cells. In a direct implementation of the 
algorithm, the cycle time would be fixed by the time 
required to perform a division. 

3. TRANSFORMATION RULES FOR SYSTOLIC 
ALGORITHMS 

In this section we describe two transformation rules which will 
permit to obtain SAs efficiently implementable in hardware. The 
formulation of these rules is based on the model presented in the 
previous section. The rules have been particularized in the case of 
1D SAs. 
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time needed to perform every operation for a given hardware to 
implement the cells. The rule is: 

SAA’=( w’, I’, 0’ , R’ , E’ , S’ , k’) performs the same 
computation as A = (w, Z, 0, R, E, S, k) if: 

A kusa reguZarll0 structure 

w’ = w 

k’=ck 

E’=D.@ 

S’ =S=D-1 

R-z DR=D-’ 

Z’,(k-t+l) = Zi(kt+l) i E[l..pl and t zz 0 

O’,(k’t+lJ = Oi(kt+l) ic[l..ql and t20 

Any matrix of the form % is defined as: Xc&j1 = Z-d’2’ if X&i) = 
Z-<u’ or xf(i,j) = 0 if X(i,j) = 0. D is a diagonal matrix with w-by-w 
elements in the form of D&i) = Z-di. The values c and di can be any 
of those belonging to the set of rationals. Values c and di 
(i c [Z..wJ are the parameters of rule 1. 

2: Rule 

This rule is based on coalescing. Its objective is to eliminate the 
inefficiency of a k-slow SA, with a regular I/O structure, in which 
every cell performs one valid operation only one out of every k 
cycles. The rule allows to transform an SA A’(k’-slow) into an SA 
A*, which performs the same computation, requiring the same 
number of cycles, but using a lesser number of cells (w*). Cell q of 
A* will perform operations assigned to p(g) adjacent cells of A’. 
That will be possible if the p(q) adjacent cells of A’ perform their 
operations in different cycles. The values of p(q) (q C fZ..w*lJ are 
the parameters of rule 2. These values must satisfy the following 
condition: 

UF 

2 p(q)= w’ 
q=l 

Cell q of A* will perform operations assigned to cells a(q). bfq) of A’, 
where: 

q-1 
a(n) = 1+ 2 p(i) and b(q) = a(q) + p(q)- 1 Q cD..w*l 

i=l 

Rule 2 can be formulated as follows: 

LetA’beanSArepresentedbyA’=(‘w’,I’,O’,R’,E’,S’,kl. 
We define Z’(i) as the number of cycles a data item requires to 
travel from cell 1 to cell i in SA A ‘: 
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T(i)= z r’ (j+lJ) ic[l..w’l 

j=l 

If A’satisfies condition: 

Z’(i)modk* # T(~)modk’ ijC[a(q)..b(q)l,i#j and Q C[l..w*l (1) 

then applying rule 2, with parametres p(q) to A’we obtain a new 
SA A* = ( w*, I*, O*, R+, E*, S *, k*) which performs the same 
computation as A’. Elements in the tuple modelling A* are 
obtained by the following expressions: 

e*(q,q) = minp,qkqj e’(i.i) q c[l..w*l 

e*(w*,w*+l) = e*(w’,w’+l) 

s*(w*,l) = s’(w ‘,l) 

Figure 1. (a) ID SA for band triangular system of linear 
equations, (b) SA after applying rule 1, and(c) 
SA after applying rule 2. 

Rule 1. A 

Rule 1 is equivalent to transformations presented in [221. It is 
based on theconcepts of retiming and slowdown [31. The rule allows 
to obtain an equivalent SA by resynchronizing the original one. In 
this new SA, cycles in which data arrive to cells and delays between 
cells have been modified. These new delays will serve to model the 
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SAA T*(q+l,q) = r’(a(q+ M(q)); r*(q,q+ 1) = r’(b(q),a(q+ 1)) 

q CIl..w*-11 

I* (1+1) = l’jV&-+l) a t+e*(q,q)-e’(Q) = Rk’ 
q 

iC[a(q)..b(q)],q C[l..w*] and tr0 

k* is the number of different problems that can be solved by SA A* 
in an interleaved way. An algorithm to obtain k* is described in 
[271. This value is not necessary to achieve our goal. 

Figure 1.b shows the SA obtained by applying rule 1 with 
parameters c=2 and di = -(i-l) fif[l..8]) to the SA shown in figure 
1.a. The new SAisI-slow. Delays between cells and the structure of 
input data sequences have been changed according with 
expressions described in this section. Now, applying rule 2 with 
parameters p(l) =3, p(2) =3 and p(3) =2 we obtain a new SA A* 
shown in Qure l.c. This SA has only 3 cells. Using a counter 
module k’=4, initialized to zero, it is possible to determine, in every 
cycle, the operation to be performed by each cell as well as the data 
involved. These data can arrive from the neighbour cells or from 
operations performed by the cell in previous cycles. That is the 
reason for the feedback links. These links represent 
communications between cells of A: assigned by coalescing, to the 
same cell of A*. The input data sequences to each cell of A* have 
been obtained by interleaving data sequences in SA A ! A more 
detailed description of the procedure to obtain this structure can be 
found in [271. 

Note that, in the previous example, rule 2 could have been 
applied with parameters p(q) = k’=4. For these values of the 
parameters p(q), the number of cells of A* is minimum (w* = w Ik 1 
and the utilization of every cell is maximum (each cell performs one 
valid operations every cycle). 

4. ADAPTING SYSTOLIC ALGORITHMS TO THE 
HARDWARE 

Transformation rules presented in the previous section can be used 
with different goals in mind (automatic SA partitioning, SA 
adaptation for its execution in Distributed Memory Multiprocessor 
Systems, etc). In this section we show how to use these rules to 
adapt SAs to the hardware selected to implement their cells. 
Specifically, a method is proposed to implement 1D band SAs with 
data contraflow using PFLJs efficiently. 

Figure 2 synthesizes graphically the proposed methodology. 
Using a description of the hardware, parameters for rules 1 and 2 
are obtained. These rules are then applied to the initial SA A. 
Using the resulting models for A’and A* and the description of the 
hardware, the structure and control of the SAP is automatically 
obtained. In this section we will see how to obtain an SA A* with a 
minimum number of cells (w* = w Yk 1. So, parameters for rule 2 are: 
fin1 = k’(q C fl..wYk!7) and it will be necessary to find the 
parameters for rule 1. 

We define OPi as the operation performed by cell i of the initial 
SA A. This operation produces two results. One of them is sent to 
cell i +I (or to the outside) and the other is sent to cell i-1 (or to the 
outside). We need some kind of representation of the hardware to be 
used in order to implement each cell. We propose a couple as a 
model of the hardware: 

H= (RT,L) 

RT is a vector of w reservation tables. Reservation table RTi 
describes how the stages of a pipelined multifunctional unit 
(PMU) are used to perform OPi. We suppose that the PMU is 
able to perform any of the w operations OP1.. OP,. 

P 
(CA) “y t ALGORITHM - lXARDWARE 

SAA*- 

Figure 2. Use of transform&ion rules to a&pt 
systolic algorithms to the hardware 
selected to implement their cells 

L is a matrix with w-by-w elements in the form of L&j) = ZuU’ 
or L&j> = 0. The value Kij) is the number of cycles required by 
the PMU to obtain, by performing OPj, the value to be sent to 
cell i. Ifcellj produces no values for cell i then L&j) = 0. 

To apply rule 2, it is necessary to fulfil condition (1) described in 
section 3. But, if PMUs are used to impIement each cell, this 
condition is not sufficient. It is necessary also to guarantee that 
there will not be conflicts in the use of the stages of the PMUs. In 
our case, p(q) = k’ (q E [l..w*fi. So, reservation tables for the k’ 
operations assigned to each cell of A* must allow that any two 
operations can be initiated, in successive cycles, without conflicts. 
This restriction obviously influences the design of the PMUs to be 
used. Henceforth, we will call this restriction as Rl. 

As an example, figure 3 shows the hardware selected to 
implement SA in figure 1.a. To perform divisions required in cell 1, 
the division inversion algorithm [281 is applied, as shown in the 
following expression: 

Q = $ = -AR(2 +RB) 

where R is an approximation of value -II% obtained by indexing a 
lookup table with some bits of B. If we use two J-stages pipelined 
multipliers and one Z-stages pipelined adder then a division 
requires 8 cycles, if we disregard the time to access the lookup 
table. Reservation table in figure 3.a shows how this operation is 
performed. Using the same kind of multipliers and adders, an inner 
product step can be performed in 5 cycles as shown in figure 3.b. 
Note that reservation tables in figure 3 satisfy restriction Rl. 

The model for the hardware to be used is completed by giving 
the following values: 

U2.1) = 8 

I(i+l,r3 = 0 iC[2..w-11; Ki,i+l)= 5 iE[l..w-11 

L(iJ) = 0 otherwise 

Now, we need to obtain the parameters of rule 1 which is necessary 
to adapt SA A t.o the hardware. These parameters must satisfy the 
following conditions: 

condition (a): 

In the resulting SA A ‘, the delay associated with a link from a cell 
to any of its neighbours must be, at least, equal to the number of 
cycles required by the former to produce a value to be sent to the 
later. Moreover, this value must be, at least 1 to avoid data 
broadcasting. For the case of ID band SAs with data contraflow, 
this condition can be enunciated as follows: 

(a.1) r’(i,i+l) = di+cr(i,i+l)-di+I 5 mal:(l,&,i+l)) i6[l..w-ll 

(a.2) r*(i+l,i) = di+l+cr(i+l,i)-di 2 max(lJ(i+I,il) iC[l..w-11 
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RB 2+RB 

F 
L 
A 

E 

E 
L 

AR AR(2 + RB) 

(a) 

W 

Figure 3. A possible hardware to 
implement: (a) divisions,(b) inner 
product steps. 

condition (b): 

The first data item in any input sequence to A’ must not arrive to 
the cells before the SA computation starts. In our case, this 
condition can be expressed as follows: 

a#)=0 ifCNT=B; s#.):= 1 otherwise 

s&)=0 ifCNT=B; s&l:= 1 otherwise 

Figur 
(b.11 e’(Q) = di + c&i) 2 0 i c[l..w] 

(b.2) e’(w,w + 1) = dw + c-&,w+ 1) zz 0 

condition (c); 

This condition is derived from the particularization of condition (1) 
described in section 3, for the case of 1D band SAs with data 
contraflow, and assumingp(q) = k’. In this case: 

i-l i-l 

~(9 = x r’(j+lJ = 2 (dj+l+cr(i+lJ~-dj) icIl..m] 

j=l j=l 

The condition is: 

(c) Z’(i) mod k ’ f T(I] mod k ’ 

ijc[(g-l)k*+l..qk’],itj and q <[l..b] 

Algorithm 1 can be used to find a set of values (c,db which satisfy 
conditions (a), (b) and (c). In the obtained solution, c has the 
minumum possible value. There can be different valid solutions. It 
is possible also that no solution exists, if we use the minimum value 
for c. In this case, solutions must be found by increasing the value 
of c. This increase represents a loss of parallelism, and 
consequently, the resulting SA A* will require more cycles than A’ 
to obtain the same final result. 

Once values (c,di) are obtained, then rule 1 and rule 2 are 
applied to A. From the models of A’, A* and the hardware used, a 
simple algorithm presented in [27] obtains the SAP structure and 
control. Figure 4 shows the internal structure and control for PE 1 
abtained by applying the method to SA in figure 1.a and using the 
hardware described in figure 3.This PE initiates divisions when the 
CNT is 6 and inner product steps otherwise. 

s&)=3 otherwise 
I 

.e4. Internal structure and 
control for PE 1 of SAP to 
solve a band triangular 
system of equntions. 

5. TRANSMITTENT DATA FLOWS 

SAs obtained by applying rule 2 (as the one shown in figure lx) 
allow high hardware utilization, which tends to 1, when the 
initiation phase has been completed (and all the cells begin to 
perform valid operations). However, the initiation phase requires 
many cycles. Most of these cycles are the result of the unnecessary 
retention suffered by some data items inside the cells. For instance, 
in figure l.c. each element of vector x computed in cell 1 is held in 
this cell during &‘=4 cycles before it is sent to cell 2. This value 
could be sent to cell 2 as soon as it is computed. Thus, the initiation 
phase could become shorter. 

This innefficiency appears when, in the initial SA A, there is a 
transmittent data flow. Data in a transmittent data flow do not 
suffer any change during its travel through the cells. This problem 
can be solved by appropriately applying rule 1 to A. 

In this section we consider the case of an 1D band SA with data 
contraflow in which there is a transmittent data flow. Data in this 
flow are generated at one end of the SA and travel to the other end 
without modifications. If data in the transmittent data flow go from 
cell 1 to cell w then, in the model of the hardware to be used, we 
have: 

Z(i+lJ = 0 it[2..w-11 

If data in the transmittent data flow go from cell w to cell I then we 
have: 

I(i,i+l) = 0 if[l..w-21 

We will show how to solve the first case. The second one can be 
solved in a similar way. We will assume also, as in the previous 
section, that pfg) = k’ (q f /l..w*]). Now, the parameters of rule 1 
must satisfy the following conditions: 
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(c&l) di + cr(i,i+l)--d,+l 5 max(l,l(i,i+l)) iE[l..w-11 

(a.2) di+l +cr(i+1,c?-di 2 max(l,I(i+l,fi) 

iC[l..w-l] and i isnot amultipleofk’ 

(a.31 dgk.+l + cr(i+lJ - d,g-l)k.+lz 
j=(g-l)k’+l 

zr nax(I,.!((q-l)k’+2,tq-I)k’+l)) 

W’ 
q Eli.. F-11 

Conditions (a.1) and (a.2) are similar to those appearing in section 
4. Condition (a.3) indicates that the minimum delay associated to 
the path from cell (q-l)k’ fl to cell qk’ tl in A’fq C [l..w*-11) is 
equal to the number of cycles needed by the former to produce a 
value which will be sent through this path. So, after applying, cell 
q-l of AC will send data to cell q as soon as possible. On the other 
hand, parameters d; must satisfy conditions (b) and (c) as described 
in section 4. 

The algorithm to obtain parameters for rule 1 is a slightly 
different version of algorithm 1. Sentences (3) and (4) in procedure 
find-initialparameters of algorithm 1 must be replaced now by 
the following ones: 

fori:=ltow-ldo 
If i is not a multiple of k ’ 

then di+l := max (l,l(i fl,i)J-cr(i f I,i) +d, 

forq:= 1 tow’tk’-1 do 
dktg+l:= max(l,lKq-1)k’ +2,(q-l)k’ fl))f&+l)kv+l 

qk’ 
- x cdj+lj) 
j=(q-lJk’+l 

This set of values are obtained by replacing the sign 2 for = in 
expressions (a.2) and (a.3). Sentences (16), (1’7) and (18) in 
procedure find-new-parameters must be replaced by: 

if not impossible 
then fo:m: = i to r(q)-1 do 

,,,+I := d,+max (l,l(m+ I ,m))-cr(m+l ,mI 

As an example, applying rule 1 with parameters c=2, dl =O, 
dz = -1, cl3 = -2,d4 = -5,ds = -6,de = -7,d7= -10,anddg = -11, 
to the SA shown in figure 1.a we obtain SA in figure 5. A delay of -1 
cycle is associated with link from cell 3 to cell 4 and link from cell 6 
to cell 7. This delay is represented by means of a white rectangle. A 
negative delay does not make any physical sense. However, SA in 
figure 5 must be understood in the following way: a value sent to 
the right by cell 1 is received at the same time, one cycle later, by 
cells 2 and 4, and 2 cycles later by cells 3, 5 and 8. Applying now 
rule 2 with parameters p(l) =3, p(2) =3 and p(3) =2 we obtain an 
SA similar to that shown in figure l.c. However, in this case, cells 2 
and 3 receive the iirst value from the North 2 and 3 cycles sonner 
respectively. 

There is another source of innefficiency when applying rule 2. 
With reference to figure l.c, cell 1 can not perform the first valid 
operation until it receives bl. This value requires 21 cycles to reach 
cell 2 from cell 8 in spite of the fact that it is not modified during its 
travel. This problem can be solved bypassing the firsts values of B 
so that the cells can initiate operations as soon as possible. 
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Figure 5. Applying rule 1 when there is a 
transmittent data/low 

6. IMPLEMENTATION WITH MINIMUM HARDWARE 

Restriction Rl, described in section 4, can force to use more 
hardware than is strictly necessary to implement each operation. 
For example, as figure 6 shows, a division can be implemented with 
just one multiplier and one adder, in the same number of cycles as if 

two multipliers and one adder were used. However, if this 
implementation were used, then restriction Rl would not be 
satisfied and rule 2 could not be applied as described in section 4. 
In this section we propose an algorithm to determine the 
parameters of rule 1 when the used hardware does not satisfy 
restriction RI. In this case, it will not be generally possible to 
assign k’cells of A’to every A* cell . The proposed algorithm also 
obtains the parametersp(q) for rule 2. 

Solutions to this problem can be found by adapting results of 
previous works [291,1301. In these works, methods are proposed to 
optimize the execution of a given set of operations in a PMU. In our 
case we know that: 

a) the order in which operations must be initiated is fixed by 
the SA. 

b) the initiation sequence must be periodically repeated, 
depending on the slow of the SA. 

c) due to data dependencies, the initiation of operations must 
be separated in time by a minimum number of cycles. 

On the other hand, an additional restriction is imposed to the 
solution of our problem. We will not allow a PMU to initiate more 
than one operation per cycle. The objective of this restriction is to 
limit the required bandwidth when implementing each ceI1. 

Our first step is to evaluate the number of adjacent cells of A ’ 
that can be assigned to each A* cell , that is, the parameters of rule 
2. Then, the cycles in which every operation must be initiated are 
obtained. These values will serve to determine the parameters of 
rule 1. Without any lack of generality, we describe the method by 
applying it to cell 1 ofA*. This cell will execute OP1, OPz,... 

Suppose that c is evaluated as described in algorithm 1. So, k’ 
= kc. Suppose also that every PMU hasp stages and that it is able 
to perform any of the w operations of SA A. Let R’l’i be the 
reservation table to execute OFi, using the PMU. 

We define MU(i,mj as the number of marks in the m-th row of 
RTi. It is possible to assign, at most, s operations to cell 1 of A* if, 
for any of the p stages of the PMU, the number of marks in 
reservation tables of these operations is not greater than k.’ So, e 
satisfies the following condition: 

8 $+I 
mu<=l z MU(+) s k’ and maXPm=, x M&m) > k’ 

i=l i=l 

Value s is a maximum for parameter p(f) fixed from the 
reservation tables. A maximum for the MAL (minimum average 
latency) [301 of the PMU is s/k ‘. 
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Figure 6. Reservation tuble to implement a 
division using just one multiplier 
and one adder 

It is possible that not all of these s operations can be assigned 
to cell 1 of A*. To determine the real value of p(l) we use the 
reservation tables and the static collision matrices. Suffice it to 
apply the theory described in 1301, taking into account features (al, 
(b) and (cl of our problem. 

Let CMi be the static collision matrix associated to OPi. To 
obtain this matrix it is necessary to consider feature (bl, that is, OF, 
must be initiated every k’ cycles. Moreover, all the elements in the 

first column of every CM will be TRUE to avoid the initiation of 
more than one operation in the same cycle. 

Suppose that OPi has been initiated in a given cycle and the 
dynamic collision matrix (DCM) of the PMU for this cycle, has been 
obtained. Now, we decide when OPi+l can be initiated. Due to (cl, 
this operation can be initiated x-l cycles after OPi if: 

(1) x-l 2 I(i+lJ 

(2) r-l + I(i,i+l) S R’ 

(3) DCM (i+ 1,~) = 0 

Conditions (11 and (2) are due to data dependencies between OPi 
and OPi+r and between OPi+l and OPi, respectively. Condition (3) 
must be satisfied to avoid conflicts in the use of the stages of the 
PFU. 

If we decide to initiate OPi+l x-l cycles after OPi then the new 
DCM must be obtained by ORing , bit-by-bit, CMi+l with the DCM 
associated to the PMU when OPi was initiated, rotated x-1 columns 
left. This rotation in necessary to take into account feature (b). 

Due to the fact that the initiation sequence is finite and 
periodical, the typical modified state diagram appearing in [301, 
which represent states of the PMU (nodes) and transitions (edges), 
becomes, in our case, a tree. Each node at level i in the tree 
represents a possible initiation of OPi. From every node at level i 
there are as many edges to nodes at level i fl as valid initiations 
exist for OPi+l. The number of levels of the tree is the value ofp(l), 
the number of A’ cells assigned to cell I of A*. Any path in the tree 
with size p(l) gives a possible initiation sequence for the p(2) 
operations. 

In order to improve the PMU efficiency it is possible to modify 
the reservation tables by using the method of delay insertion [301. 
Moreover, in our case, a little increase of value c (which implies an 
increase of k’) can result in an increase of the number of cells 
assigned to each A* cell. 

Figure 7 shows a simple example of this procedure. Figure 7.a 
shows the reservation tables to implement the 4 cells of an SA. 
Values of matrix L, needed to complete the hardware model, are 
also shown. Suppose that k’ = 8. Then only 3 cells, at most, can be 
assigned to cell 1 of A*. Figure 7.b shows the static collision 
matrices for these 3 operations and figure 7.c shows the resulting 
tree. In this case, the 3 operations can be assigned to cell 2 of A*. 
OPz must be initiated 5 cycles after OPl and OP3 2 cycles after OPz. 

Algorithm 2 synthesizes the proposed procedure. It can be used 
to obtain the parameters for rules 1 and 2 that must be used to 
adapt SA A to the hardware. 

CM, CM2 

(b) 

k) 

Figure 7. Example ofprocedure described in section 
6: (a) model for the hardware to be used, 
(b) collision matrices, fc) state obtained. 

7. NON-TIME-HOMOGENEOUS SYSTOLIC ALGORITHMS 

The methodoly presented in previous sections can be applied to SAs 
in which each cell must perform always the same operation 
(time-homogeneous SAs), though different cells can perform 
different operations (non-spatial- homogeneous SAs). 

Non-time-homogeneous SAs appear frecuently in the 
literature. For instance, in the systolic ring for triangular system of 
equations proposed in 1201, every cell must perform divisions in 
some cycles and inner product step in others. Non-time 
homogeneity appears also is most cases when applying DBT 
patitioning [14]. 

Non-time-homogeneous SAs can be easily treated by the 
proposed methodology. Let OPi,l,..,OPi,ni be the ni different 
operations performed by cell i during the !jA computation. Let RTij 
be the reservation table to implement OP,j. We define RTi as the 
reservation table obtained by ORing the ni reservation tables 
associtated with cell i. Now, using RTi as the reservation table for 
cell i, algorithms presented in previous sections can be used. This 
simple procedure can be successfully applied, specially if 
reservation tables associated with a cell are similar. This fact can 
be easily achieved for typical operations appearing in 
non-time-homogeneous SAs. 

8. CONCLUSIONS 

Generally, SAs Design Methodologies proposed in the literature 
start working from a specification of the problem to be solved, but 
do not take into account any implementation restriction. 
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In this paper we have proposed a technique that can be used to 
adapt automatically an SA to the hardware used to implement it. 
This technique permits to obtain SAs with any of the following 
features: 

a1 number of cells independent of the problem size, 

b) different time consuming operations, 

c) two-level pipelined 

The technique is based on two transformation rules and a set of 
algorithms that use these transformations. Specifically, algorithms 
have been particularized to obtain efficiently implementable, two- 
level pipelined 1D band SAs with data contraflow. As an example, 
an SA to solve band triangular system of equations is presented. 
This kind of SAs can not be obtained through any other design 
methodology proposed up to now. 

The methodology is generalizable to any other kind of 1D SAs 
as well as 2D SAs. 

Transformation rules described in this paper can also be used 
for automatic partitioning of SAs. The basic idea consists on 
applying rule 1 with parameter: 

1 N 
c=-r-1 

k w 

where N and R are. respectively, the number of cells and the slow of 
the original SA and w is the number of cells of the target one. Rule 
2 is then applied with parameters: 

p(q)= + qc [l..wl 

At present, we are developing software tools based on the results of 
this work. These tools will permit to design automatically efficient 
SAPS. 
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ALGORITHM 1 

I* Algorithm 1 finds parameters c and di for rule 1 assuming that 
parameters for rule 2 are p(9) =k’ (9 E fl..w*l). First, the 
algorithm finds a set of values which satisfies condition (a) 
described in section 4. Then, these values are successively modified 
until they satisfy condition (c). Finaly, a simple correction of the 
values is applied to fulfil condition (b). */ 
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Procedure find-initial-parameters 

I* This procedure find a set of values which satisfy condition (a) ‘1 

begin 

/*Adding expressions (a.11 and (a.2) we obtain the minimum 
possible value for c *I 

W-l max Cl ,I (i,i f I)) f max(l,l (i + 1 ,O) 
(1) c:= max (___-__-__-_-__-__ -__ ____--_-___-___--_-_______________) 

i=l r(i,i+l)+ r(i+l,i) 

c-9 dl:=O 

I* We assign values to d; by replacing the sign 2 for = in 
expression (a.2) *I 

(3) fori:=ltow-ldo 
(4) d, ,+I := max(l,lfi+l,i))-cr(i+l,i) + di 

/* This solution re 
to the links going F 

resents the assignation of the necessary delays 
rom right to left of the SA. Similary, delays can 

be assigned to the links going from left to right *I 

end 

Procedure check-condition (p, ok) 

begin 

/* This 
x 

rocedure, not shown here, checks condition (cl. If it is not 
satisfie thenp takes the value of the index of the cell which causes 
conflicts *I 

end 

Procedure find-newwrameters (p,impossible) 

begin 

I2 
k’: =ck 
q:=(p-l)divk’+l 

/* Cell p of A ’ will be assigned to cell q of A* *I 

afq) := (q-1)k + 1 
p(q) := o(p)+k’-1 

:;o;!= FALSE 
while not stop do 
begin 

di:= difl 

I* This increment of d, represents the transfer of one 
delay unit from the link going from cell i to cell i-f to 
the link going from cell i-l to cell i. It is necessary to 
check if this transfer is possible, that is, if this delay 
unit exists */ 

ifdi + crfi,i-1) - dim1 + max(l,l(i-1,i)) 5 k’ 
then begin 

stop : = TRUE 
impossible : = FALSE 

end 
else begin 

i:= i-1 
ifi =aJq) 

then begin 

/* It is not possible to 
avoid conflicts between 
operations assigned to 
cell q of A* *I 

end 
end 

stop : = TRUE 
impossible : = TRUE 

end 

(16) ifnot impossible 

i:i1 
then for m : = i to w-l do 

d,,,+l:= d, + max(l,l(m+l,m))-cr(m+l,m) 

end 

Procedure fltqarameters 

&I’*’ procedure modifies parameters in order to satisfy condition 

begin 

(1) d: = min cirn!; (di+ce(i,i)), d,+ce(w,w +I)) 

13; 
fori:= 1 towdo 

di : = dimd 

end 

begin I* Algorithm 1 */ 

I2 
find-initial>rameters 

I:] 

repeat 
check-condition (p, ok) 
ifnot ok 

8 
the? find_newgarameters (p, impossible) 

g 

;ntl ok or tmpossrble 
0 

then fitsrameters 

end 

ALGORITHM 2 

/* This algorithm obtains parameters for rules 1 and 2 if restriction 
Rl is not satisfied by the hardware. *L/ 

begin I* Algorithm 2 *I 

(1) 
w-l max (1,l (i,i f 1)) i- max(l ,I (i +l ,i)) 

c:= max (___---------____________________________--------------) 
i=l r(i,ifl)+ rfiflj) 

k’:= kc 
q:=l 
a(q):= 1 
stop: = FALSE 
while not stop do 
begin 

Select b(q) which satisfies 

P b(q) 
max B MU(i.m) 5 k’ and 
m=l i=afq) 

MU(i,.m) > k ’ or b(9) = W) 
m=l i=afq) 

Obtain the tree for cell 
7 

of A* and select a 
maximum size path. Let, p q) be the number of 
operations in the initiation sequence associated 
with the selected path 

Mq) : = a&J +Pfq)-l 

Let r’(a (q) + $a (q) +-i-l) be the label of edge from 
node at level I to node at level i+l in the selected 
path (i E tl..piqh11) 

ifMq) = w 
then begin 

stop: = TRUE 
w*:=q 

end 
else begin 

a(q+l):= Mq)i-I 
r’Mq+U, b(q)):= l(a(q+l).MqN 

end9..=4+1 

end 
dl:=O 
fori:=ltow-ldo 

di +I : = r ‘(i + 1 ,i) f di-cr(i + 1 ,.i) 
Pori:=ltawdo 

di : = di-d 

I* The value of 4 is defined in algofithm 1 iI/ 
2 $ell q ofA* will perform operations asslgned to cells afqj..WqJ of 

end 
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